Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 237(6): 2136-2147, 2023 03.
Article in English | MEDLINE | ID: mdl-36600397

ABSTRACT

In cereal species, grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. Whether a highly conserved ovule tissue, the nucellus, has any impact on grain size has remained unclear. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase (PME) genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the unfertilized ovule but absent from the seed. Ovules from an opm1 opm2 mutant and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape and ovules that are longer than wild-type (WT) controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth before fertilization, one that has been lacking from models exploring improvements in grain size.


Subject(s)
Edible Grain , Hordeum , Edible Grain/genetics , Ovule/metabolism , Hordeum/genetics , Seeds/genetics , Cell Wall , Gene Expression Regulation, Plant
2.
J Exp Bot ; 72(7): 2383-2402, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33421064

ABSTRACT

We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.


Subject(s)
Hexosyltransferases , Hordeum , Amino Acid Sequence , Fructans , Genome-Wide Association Study , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hordeum/genetics , Hordeum/metabolism , Vacuoles/metabolism
3.
Plant J ; 105(5): 1192-1210, 2021 03.
Article in English | MEDLINE | ID: mdl-33249667

ABSTRACT

Shifting from a livestock-based protein diet to a plant-based protein diet has been proposed as an essential requirement to maintain global food sustainability, which requires the increased production of protein-rich crops for direct human consumption. Meanwhile, the lack of sufficient genetic diversity in crop varieties is an increasing concern for sustainable food supplies. Countering this concern requires a clear understanding of the domestication process and dynamics. Narrow-leafed lupin (Lupinus angustifolius L.) has experienced rapid domestication and has become a new legume crop over the past century, with the potential to provide protein-rich seeds. Here, using long-read whole-genome sequencing, we assembled the third-generation reference genome for the narrow-leafed lupin cultivar Tanjil, comprising 20 chromosomes with a total genome size of 615.8 Mb and contig N50 = 5.65 Mb. We characterized the original mutation and putative biological pathway resulting in low seed alkaloid level that initiated the recent domestication of narrow-leafed lupin. We identified a 1133-bp insertion in the cis-regulatory region of a putative gene that may be associated with reduced pod shattering (lentus). A comparative analysis of genomic diversity in cultivars and wild types identified an apparent domestication bottleneck, as precisely predicted by the original model of the bottleneck effect on genetic variability in populations. Our results identify the key domestication genetic loci and provide direct genomic evidence for a domestication bottleneck, and open up the possibility of knowledge-driven de novo domestication of wild plants as an avenue to broaden crop plant diversity to enhance food security and sustainable low-carbon emission agriculture.


Subject(s)
Genome, Plant/genetics , Lupinus/genetics , Plant Leaves/genetics , Genetic Variation/genetics , Mutation/genetics
4.
J Exp Bot ; 71(1): 138-153, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31536111

ABSTRACT

In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-ß-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.


Subject(s)
Carbohydrate Metabolism , Edible Grain/growth & development , Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Biological Transport , Edible Grain/genetics , Endosperm/genetics , Endosperm/growth & development , Hordeum/growth & development , Hordeum/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism
5.
Sci Rep ; 9(1): 17250, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754200

ABSTRACT

The composition of plant cell walls is important in determining cereal end uses. Unlike other widely consumed cereal grains barley is comparatively rich in (1,3;1,4)-ß-glucan, a source of dietary fibre. Previous work showed Cellulose synthase-like genes synthesise (1,3;1,4)-ß-glucan in several tissues. HvCslF6 encodes a grain (1,3;1,4)-ß-glucan synthase, whereas the function of HvCslF9 is unknown. Here, the relationship between mRNA levels of HvCslF6, HvCslF9, HvGlbI (1,3;1,4)-ß-glucan endohydrolase, and (1,3;1,4)-ß-glucan content was studied in developing grains of four barley cultivars. HvCslF6 was differentially expressed during mid (8-15 DPA) and late (38 DPA) grain development stages while HvCslF9 transcript was only clearly detected at 8-10 DPA. A peak of HvGlbI expression was detected at 15 DPA. Differences in transcript abundance across the three genes could partially explain variation in grain (1,3;1,4)-ß-glucan content in these genotypes. Remarkably narrow sequence variation was found within the HvCslF6 promoter and coding sequence and does not explain variation in (1,3;1,4)-ß-glucan content. Our data emphasise the genotype-dependent accumulation of (1,3;1,4)-ß-glucan during barley grain development and a role for the balance between hydrolysis and synthesis in determining (1,3;1,4)-ß-glucan content, and suggests that other regulatory sequences or proteins are likely to be involved in this trait in developing grain.


Subject(s)
Genetic Variation/genetics , Glucosyltransferases/genetics , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , beta-Glucans/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Dietary Fiber/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Genotype , Glucosyltransferases/metabolism , Phenotype , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/genetics , Seeds/genetics , Seeds/metabolism
6.
J Integr Plant Biol ; 61(3): 310-336, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30474296

ABSTRACT

Grain production in cereal crops depends on the stable formation of male and female gametes in the flower. In most angiosperms, the female gamete is produced from a germline located deep within the ovary, protected by several layers of maternal tissue, including the ovary wall, ovule integuments and nucellus. In the field, germline formation and floret fertility are major determinants of yield potential, contributing to traits such as seed number, weight and size. As such, stimuli affecting the timing and duration of reproductive phases, as well as the viability, size and number of cells within reproductive organs can significantly impact yield. One key stimulant is the phytohormone auxin, which influences growth and morphogenesis of female tissues during gynoecium development, gametophyte formation, and endosperm cellularization. In this review we consider the role of the auxin signaling pathway during ovule and seed development, first in the context of Arabidopsis and then in the cereals. We summarize the gene families involved and highlight distinct expression patterns that suggest a range of roles in reproductive cell specification and fate. This is discussed in terms of seed production and how targeted modification of different tissues might facilitate improvements.


Subject(s)
Arabidopsis/metabolism , Edible Grain/metabolism , Indoleacetic Acids/metabolism , Ovule/metabolism , Seeds/metabolism , Signal Transduction
7.
Sci Rep ; 8(1): 11025, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038399

ABSTRACT

The aleurone is a critical component of the cereal seed and is located at the periphery of the starchy endosperm. During germination, the aleurone is responsible for releasing hydrolytic enzymes that degrade cell wall polysaccharides and starch granules, which is a key requirement for barley malt production. Inter- and intra-species differences in aleurone layer number have been identified in the cereals but the significance of this variation during seed development and germination remains unclear. In this study, natural variation in mature aleurone features was examined in a panel of 33 Hordeum vulgare (barley) genotypes. Differences were identified in the number of aleurone cell layers, the transverse thickness of the aleurone and the proportion of aleurone relative to starchy endosperm. In addition, variation was identified in the activity of hydrolytic enzymes that are associated with germination. Notably, activity of the free fraction of ß-amylase (BMY), but not the bound fraction, was increased at grain maturity in barley varieties possessing more aleurone. Laser capture microdissection (LCM) and transcriptional profiling confirmed that HvBMY1 is the most abundant BMY gene in developing grain and accumulates in the aleurone during early stages of grain fill. The results reveal a link between molecular pathways influencing early aleurone development and increased levels of free ß-amylase enzyme, potentially highlighting the aleurone as a repository of free ß-amylase at grain maturity.


Subject(s)
Hordeum/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Hordeum/genetics , Hydrolysis , Laser Capture Microdissection , Plant Proteins/metabolism , beta-Amylase/genetics , beta-Amylase/metabolism
8.
Plants (Basel) ; 7(2)2018 May 31.
Article in English | MEDLINE | ID: mdl-29857498

ABSTRACT

The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

9.
Clin Endocrinol (Oxf) ; 85(4): 609-15, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27146357

ABSTRACT

OBJECTIVES: IGSF1 deficiency syndrome (IDS) is a recently described X-linked congenital central hypothyroidism disorder characterized by loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene. The phenotypic spectrum and intrafamilial variability associated with IDS remain unclear due to a paucity of large, well-characterized pedigrees. Here, we present phenotypic analysis and molecular characterization of a five-generation pedigree with IGSF1 deficiency containing 10 affected males. PATIENTS AND METHODS: Pituitary function was assessed in all available family members (n = 8 affected males and n = 5 carrier females). Molecular characterization of the family was performed by Sanger sequencing of PCR products amplified from the IGSF1 locus and by array comparative genomic hybridization. RESULTS: A 42-kb IGSF1 deletion spanning the entire coding sequence was identified in all affected males. TSH deficiency, although subclinical in one case, was identified in all affected males (n = 8). PRL and GH deficiency were also present in 5 of 6 and 4 of 8 affected males, respectively. In contrast to previous reports, macroorchidism was not detected in any of the four affected males who were examined for this feature. Only 1 of 5 carrier females had pituitary dysfunction (TSH and GH deficiency). CONCLUSION: Individuals with identical IGSF1 deletions can exhibit variable pituitary hormone deficiencies, of which overt TSH deficiency is the most consistent feature. We also show that macroorchidism is not obligatory in males with IDS. Mutations of IGSF1 should therefore be considered in males with isolated hypopituitarism that includes TSH deficiency.


Subject(s)
Congenital Hypothyroidism/genetics , Genetic Diseases, X-Linked , Immunoglobulins/genetics , Membrane Proteins/genetics , Sequence Deletion , Comparative Genomic Hybridization , Female , Humans , Hypopituitarism/genetics , Male , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...