Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 18(1): 2215633, 2023 12.
Article in English | MEDLINE | ID: mdl-37302099

ABSTRACT

Mastitis is among the main reasons women cease breastfeeding, which leads to them supplementing breast milk with artificial formula. In farm animals, mastitis results in significant economic losses and the premature culling of some animals. Nevertheless, researchers do not know enough about the effect of inflammation on the mammary gland. This article discusses the changes to DNA methylation in mouse mammary tissue caused by lipopolysaccharide-induced inflammation (4 h post-injection of lipopolysaccharide). We analysed the expression of some genes related to mammary gland function, epigenetic regulation, and the immune response. The analysis focused on three comparisons: inflammation during the first lactation, inflammation during second lactation with no history of inflammation, and inflammation during second lactation with previous inflammation. We identified differentially methylated cytosines (DMCs), differentially methylated regions (DMRs), and some differentially expressed genes (DEGs) for each comparison. The three comparisons shared some DEGs; however, few DMCs and only one DMR were shared. These observations suggest that inflammation is one of several factors affecting epigenetic regulation during successive lactations. Furthermore, the comparison between animals in second lactation with and without inflammation, with no inflammation history during first lactation showed a different pattern compared to the other conditions in this experiment. This indicates that inflammation history plays an important role in determining epigenetic changes. The data presented in this study suggest that lactation rank and previous inflammation history are equally important when explaining mammary tissue gene expression and DNA methylation changes.Abbreviations: RRBS, reduced representation bisulfite sequencing; RT-qPCR, real-time quantitative polymerase chain reaction; MEC, mammary epithelial cells; TSS, transcription start site; TTS, transcription termination site; UTR, untranslated region; SINE, short interspersed nuclear element; LINE, long interspersed nuclear element; CGI, CpG island; DEG, differentially expressed gene; DMC, differentially methylated cytosine; DMR, differentially methylated region; GO term, gene ontology term; MF, molecular function; BP, biological process.


Subject(s)
DNA Methylation , Mastitis , Humans , Female , Mice , Animals , Epigenesis, Genetic , Lipopolysaccharides/toxicity , Lactation/genetics , Mastitis/genetics , Gene Expression
2.
Epigenetics ; 18(1): 2215620, 2023 12.
Article in English | MEDLINE | ID: mdl-37219968

ABSTRACT

Mastitis is among the main reasons women cease breastfeeding. In farm animals, mastitis results in significant economic losses and the premature culling of some animals. Nevertheless, the effect of inflammation on the mammary gland is not completely understood. This article discusses the changes to DNA methylation in mouse mammary tissue caused by lipopolysaccharide-induced inflammation after in vivo intramammary challenges and the differences in DNA methylation between 1st and 2nd lactations. Lactation rank induces 981 differential methylations of cytosines (DMCs) in mammary tissue. Inflammation in 1st lactation compared to inflammation in 2nd lactation results in the identification of 964 DMCs. When comparing inflammation in 1st vs. 2nd lactations with previous inflammation history, 2590 DMCs were identified. Moreover, Fluidigm PCR data show changes in the expression of several genes related to mammary function, epigenetic regulation, and the immune response. We show that the epigenetic regulation of two successive physiological lactations is not the same in terms of DNA methylation and that the effect of lactation rank on DNA methylation is stronger than that of the onset of inflammation. The conditions presented here show that few DMCs are shared between comparisons, suggesting a specific epigenetic response depending on lactation rank, the presence of inflammation, and even whether the cells had previously suffered inflammation. In the long term, this information could lead to a better understanding of the epigenetic regulation of lactation in both physiological and pathological conditions.Abbreviations: RRBS, reduced representation bisulphite sequencing; RT-qPCR, real-time quantitative polymerase chain reaction; MEC, mammary epithelial cells; MaSC, mammary stem cell; TSS, transcription start site; TTS, transcription termination site; UTR, untranslated region; SINE, short interspersed nuclear element; LINE, long interspersed nuclear element; CGI, CpG island; DEG, differentially expressed gene; DMC, differentially methylated cytosine; DMR, differentially methylated region; GO term, gene ontology term; MF, molecular function; BP, biological process.


Subject(s)
DNA Methylation , Mastitis , Female , Animals , Mice , Humans , Epigenesis, Genetic , Lactation , Inflammation , Cytosine , Gene Expression
3.
Int J Med Microbiol ; 312(2): 151548, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35030401

ABSTRACT

BACKGROUND: Three healthy volunteers carried similar quinolone-resistant E. coli (QREC) (pulsed field gel electrophoresis profiles) in their gut before and after 14 days ciprofloxacin treatment. Given the intensity of the selective pressure and the mutagenic properties of quinolones, we determined whether these strains had evolved at the phenotypic and/or genomic levels. MATERIAL AND METHODS: Commensal QREC from before day-0 (D0), and a month after 14 days of ciprofloxacin (D42) were compared in 3 volunteers. Growth experiments were performed; acetate levels, mutation frequencies, quinolone MICs and antibiotic tolerance were measured at D0 and D42. Genomes were sequenced and single nucleotide polymorphisms (SNPs) between D0 and D42 were analyzed using DiscoSNP and breseq methods. Cytoplasmic proteins were extracted, HPLC performed and proteins identified using X!tandem software; abundances were measured by mass spectrometry using the Spectral Counting (SC) and eXtraction Ion Chromatograms (XIC) integration methods. RESULTS: No difference was found in MICs, growth characteristics, acetate concentrations, mutation frequencies, tolerance profiles, phylogroups, O-and H-types, fimH alleles and sequence types between D0 and D42. No SNP variation was evidenced between D0 and D42 isolates for 2/3 subjects; 2 SNP variations were evidenced in one. At the protein level, very few significant protein abundance differences were identified between D0 and D42. CONCLUSION: No fitness, tolerance, metabolic or genomic evolution of commensal QREC was observed overtime, despite massive exposure to ciprofloxacin in the gut. The three strains behaved as if they had been unaffected by ciprofloxacin, suggesting that gut may act as a sanctuary where bacteria would be protected from the effect of antibiotics and survive without any detrimental effect of stress.


Subject(s)
Ciprofloxacin , Escherichia coli Infections , Escherichia coli , Gastrointestinal Tract/microbiology , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Fluoroquinolones/pharmacology , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...