Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1076, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35058501

ABSTRACT

Laser-based light detection and ranging (LiDAR) is key to many applications in science and industry. For many use cases, compactness and power efficiency are key, especially in high-volume applications such as industrial sensing, navigation of autonomous objects, or digitization of 3D scenes using hand-held devices. In this context, comb-based ranging systems are of particular interest, combining high accuracy with high measurement speed. However, the technical complexity of miniaturized comb sources is still prohibitive for many applications, in particular when high optical output powers and high efficiency are required. Here we show that quantum-dash mode-locked laser diodes (QD-MLLD) offer a particularly attractive route towards high-performance chip-scale ranging systems. QD-MLLDs are compact, can be easily operated by a simple DC drive current, and provide spectrally flat frequency combs with bandwidths in excess of 2 THz, thus lending themselves to coherent dual-comb ranging. In our experiments, we show measurement rates of up to 500 MHz-the highest rate demonstrated with any ranging system so far. We attain reliable measurement results with optical return powers of only - 40 dBm, corresponding to a total loss of 49 dB in the ranging path, which corresponds to the highest loss tolerance demonstrated so far for dual-comb ranging with chip-scale comb sources. Combing QD-MLLDs with advanced silicon photonic receivers offers an attractive route towards robust and technically simple chip-scale LiDAR systems.

2.
Opt Express ; 28(16): 23594-23608, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752353

ABSTRACT

Chip-scale frequency comb generators lend themselves as multi-wavelength light sources in highly scalable wavelength-division multiplexing (WDM) transmitters and coherent receivers. Among different options, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out due to their compactness and simple operation along with the ability to provide a flat and broadband comb spectrum with dozens of equally spaced optical tones. However, the devices suffer from strong phase noise, which impairs transmission performance of coherent links, in particular when higher-order modulation formats are to be used. Here we exploit coherent feedback from an external cavity to drastically reduce the phase noise of QD-MLLD tones, thereby greatly improving the transmission performance. In our experiments, we demonstrate 32QAM WDM transmission on 60 carriers derived from a single QD-MLLD, leading to an aggregate line rate (net data rate) of 12 Tbit/s (11.215 Tbit/s) at a net spectral efficiency (SE) of 7.5 bit/s/Hz. To the best of our knowledge, this is the first time that a QD-MLLD optical frequency comb has been used to transmit an optical 32QAM signal. Based on our experimental findings, we perform simulations that show that feedback-stabilized QD-MLLD should also support 64QAM transmission with a performance close to the theoretical optimum across a wide range of technically relevant symbol rates.

3.
Opt Express ; 28(15): 22443-22449, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752504

ABSTRACT

The continued evolution of high capacity data center interconnects (DCI) requires scalable transceiver design. The Gigabit Ethernet (GbE) family of standards targets cost-effective and increased capacity transmission through the use of coarse wavelength division multiplexing (CWDM) and direct detection. Moving beyond near-term GbE deployments, multi-wavelength optical sources will be required to enable spectrally efficient WDM transmission, as well as small form-factor transceiver design. This work highlights the capability of a single section 32.5 GHz quantum-dash mode locked laser to provide >Tb/s capacity by demonstrating successful 50 Gb/s/λ pulse amplitude modulation transmission on modes spanning a >1 THz frequency range. Additionally, true 400G DWDM (8×56 Gb/s) C-band transmission is successfully demonstrated with the Q-Dash MLL, resulting in a spectral efficiency of 1.54 b/s/Hz.

4.
Opt Lett ; 36(22): 4377-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22089569

ABSTRACT

Near-transform-limited subpicosecond pulses at 1.56 µm were generated from an optically pumped InP-based vertical-external-cavity surface-emitting laser (VECSEL) passively mode-locked at 2 GHz repetition rate with a fast InGaAsNSb/GaAs semiconductor saturable absorber mirror (SESAM). The SESAM microcavity resonance was adjusted via a selective etching of phase layers specifically designed to control the magnitude of both the modulation depth and the intracavity group delay dispersion of the SESAM. Using the same VECSEL chip, we observed that the mode-locked pulse duration could be reduced from several picoseconds to less than 1 ps with a detuned resonant SESAM.

5.
Opt Express ; 18(19): 19902-13, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20940881

ABSTRACT

We report on a picosecond pulse source delivering near transform-limited pulses in the 1.55 µm wavelength region, based on an optically pumped InP-based mode locked Vertical External Cavity Surface Emitting Laser (VECSEL). The cavity combines two semiconductor elements, a gain structure which includes six strained InGaAlAs quantum wells and a hybrid metal-metamorphic Bragg bottom mirror bonded onto a CVD diamond substrate, and a single quantum well GaInNAs SEmiconductor Saturable Absorber Mirror (SESAM). The laser operates at a repetition frequency of 2 GHz and emits near-transform-limited 1.7 ps pulses with an average output power of 15 mW at room temperature, using 1.7 W pump power at 980 nm. The RF line width of the free running laser has been measured to be less than 1 kHz.


Subject(s)
Lasers, Semiconductor , Lenses , Equipment Design , Equipment Failure Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...