Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 1: e11, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-23344722

ABSTRACT

Electroporation (EP) of mammalian tissue is a technique that has been used successfully in the clinic for the delivery of genetic-based vaccines in the form of DNA plasmids. There is great interest in platforms which efficiently deliver RNA molecules such as messenger RNA and small interfering RNA (siRNA) to mammalian tissue. However, the in vivo delivery of RNA enhanced by EP has not been extensively characterized. This paper details the optimization of electrical parameters for a novel low-voltage EP method to deliver oligonucleotides (both DNA and RNA) to dermal tissue in vivo. Initially, the electrical parameters were optimized for dermal delivery of plasmid DNA encoding green fluorescent protein (GFP) using this novel surface dermal EP device. While all investigated parameters resulted in visible transfection, voltage parameters in the 10 V range elicited the most robust signal. The parameters optimized for DNA, were then assessed for translation of successful electrotransfer of siRNA into dermal tissue. Robust tagged-siRNA transfection in skin was detected. We then assessed whether these parameters translated to successful transfer of siRNA resulting in gene knockdown in vivo. Using a reporter gene construct encoding GFP and tagged siRNA targeting the GFP message, we show simultaneous transfection of the siRNA to the skin via EP and the concomitant knockdown of the reporter gene signal. The siRNA delivery was accomplished with no evidence of injection site inflammation or local tissue damage. The minimally invasive low-voltage EP method is thus capable of efficiently delivering both DNA and RNA molecules to dermal tissue in a tolerable manner.

2.
Cytotechnology ; 64(2): 187-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22105762

ABSTRACT

Primary mouse hepatocytes are an important tool in the biomedical research field for the assessment of hepatocyte function. Several methods for hepatocyte isolation have been published; however, many of these methods require extensive handling and can therefore compromise the viability and function of the isolated cells. Since one advantage of utilizing freshly isolated cells is to maintain an environment in which the cells are more comparable to their in vivo state, it is important to have robust methods that produce cells with high viability, good purity and that function in a similar manner to that in their in vivo state. Here we describe a modified two-step method for the rapid isolation and characterization of mouse primary hepatocytes that results in high yields of viable cells. The asialoglycoprotein receptor (ASGPR), which is one of the most abundant cell surface receptors on hepatocytes, was used to monitor the function of the isolated hepatocytes by demonstrating specific binding of its ligand using a newly developed flow cytometry based ligand-receptor binding assay. Also, an in vitro screening method for siRNA drug candidates was successfully developed utilizing freshly isolated hepatocytes with minimum culture time.

3.
Blood ; 107(6): 2262-70, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16304045

ABSTRACT

Osteoclasts differentiate from hematopoietic precursors under systemic and local controls. Chemokines and receptors direct leukocyte traffic throughout the body and may help regulate site-specific bone resorption. We investigated bone gene expression in vivo during rapid osteoclast differentiation induced by colony-stimulating factor 1 (CSF-1) in Csf1-null toothless (tl/tl) rats. Long-bone RNA from CSF-1-treated tl/tl rats was analyzed by high-density microarray over a time course. TRAP (tartrate-resistant acid phosphatase)-positive osteoclasts appeared on day 2, peaked on day 4, and decreased slightly on day 6, as marrow space was expanding. TRAP and cathepsin K mRNA paralleled the cell counts. We examined all chemokine and receptor mRNAs on the arrays. CCL9 was strongly induced and peaked on day 2, as did its receptor, CCR1, and regulatory receptors c-Fms (CSF-1 receptor) and RANK (receptor activator of nuclear factor kappaB). Other chemokines and receptors showed little or no significant changes. In situ hybridization and immunohistochemistry revealed CCL9 in small, immature osteoclasts on day 2 and in mature cells at later times. Anti-CCL9 antibody inhibited osteoclast differentiation in culture and significantly suppressed the osteoclast response in CSF-1-treated tl/tl rats. While various chemokines have been implicated in osteoclastogenesis in vitro, this first systematic analysis of chemokines and receptors during osteoclast differentiation in vivo highlights the key role of CCL9 in this process.


Subject(s)
Chemokines, CC/genetics , Chemokines, CC/physiology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Inflammatory Proteins/physiology , Osteoclasts/cytology , Receptors, Chemokine/genetics , Animals , Cathepsin K , Cathepsins/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Gene Expression Profiling , Glycoproteins/genetics , Osteopetrosis , Osteoprotegerin , RNA/analysis , Rats , Rats, Inbred Strains , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptors, CCR1 , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Tumor Necrosis Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...