Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 12: 578708, 2021.
Article in English | MEDLINE | ID: mdl-33912067

ABSTRACT

Background: A computational proteomic analysis suggested that SARS-CoV-2 might bind to hemoglobin (Hb). The authors hypothesized that this phenomenon could result in a decreased oxygen (O2) binding and lead to hemolytic anemia as well. The aim of this work was to investigate whether the affinity of Hb for O2 was altered during COVID-19. Methods: In this retrospective, observational, single-center study, the blood gas analyses of 100 COVID-19 patients were compared to those of 100 non-COVID-19 patients. Fifty-five patients with carboxyhemoglobin (HbCO) ≥8% and 30 with sickle cell disease (SCD) were also included ("positive controls" with abnormal Hb affinity). P50 was corrected for body temperature, pH, and PCO2. Results: Patients did not differ statistically for age or sex ratio in COVID-19 and non-COVID-19 groups. Median P50 at baseline was 26 mmHg [25.2-26.8] vs. 25.9 mmHg [24-27.3], respectively (p = 0.42). As expected, P50 was 22.5 mmHg [21.6-23.8] in the high HbCO group and 29.3 mmHg [27-31.5] in the SCD group (p < 0.0001). Whatever the disease severity, samples from COVID-19 to non-COVID-19 groups were distributed on the standard O2-Hb dissociation curve. When considering the time-course of P50 between days 1 and 18 in both groups, no significant difference was observed. Median Hb concentration at baseline was 14 g.dl-1 [12.6-15.2] in the COVID-19 group vs. 13.2 g.dl-1 [11.4-14.7] in the non-COVID-19 group (p = 0.006). Among the 24 COVID-19 patients displaying anemia, none of them exhibited obvious biological hemolysis. Conclusion: There was no biological argument to support the hypothesis that SARS-CoV-2 could alter O2 binding to Hb.

3.
Phys Rev Lett ; 109(4): 041101, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-23006072

ABSTRACT

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.002, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology.

SELECTION OF CITATIONS
SEARCH DETAIL
...