Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Talanta ; 269: 125411, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008023

ABSTRACT

The composition of essential oils varies according to culture conditions and climate, which induces a need for simple and inexpensive characterization methods close to the place of extraction. This appears particularly important for developing countries. Herein, we develop an analytical strategy to determine the thymol content in Ocimum Gratissimum, a medicinal plant from Benin. The protocol is based on electrochemical techniques (cyclic and square wave voltammetry) implemented with a low cost potentiostat. Thymol is a phenol derivative and was directly oxidized at the electrode surface. We had to resort to submillimolar concentrations (25-300 µM) in order to minimize production of phenol oligomers that passivate the electrode. We worked first on two essential oils and realized that in one of them the thymol concentration was below our detection method. These results were confirmed by gas chromatography - mass spectrometry. Furthermore, we optimized the detection protocol to analyze an infusion made directly from the leaves of the plant. Finally, we studied whether the cost of the electrochemical cell may also be minimized by using pencil lead as working and counter electrodes.


Subject(s)
Ocimum , Oils, Volatile , Plants, Medicinal , Thymol/analysis , Ocimum/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Phenols/analysis , Plant Oils/analysis
2.
Infect Dis Poverty ; 12(1): 8, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759905

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. METHODS: Children presenting with CM (n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients' cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson's Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. RESULTS: Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1ß), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann-Whitney U-test, P-values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P-value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C-C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. CONCLUSIONS: The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Humans , Child , Malaria, Cerebral/diagnosis , Interleukin-8 , Neuroinflammatory Diseases , Ligands , Cytokines , Biomarkers , Risk Factors
3.
Front Cell Infect Microbiol ; 12: 952993, 2022.
Article in English | MEDLINE | ID: mdl-36310859

ABSTRACT

Cerebral malaria (CM) is one of the most severe forms of malaria and is a neuropathology that can lead to death. Monocytes have been shown to accumulate in the brain microvasculature at the onset of neurological symptoms during CM. Monocytes have a remarkable ability to adapt their function to their microenvironment from pro-inflammatory to resolving activities. This study aimed to describe the behavior of monocyte subpopulations during infection and its resolution. C57BL/6 mice were infected with the Plasmodium berghei ANKA strain and treated or not with chloroquine (CQ) on the first day of the onset of neurological symptoms (day 6) for 4 days and followed until day 12 to mimic neuroinflammation and its resolution during experimental CM. Ly6C monocyte subpopulations were identified by flow cytometry of cells from the spleen, peripheral blood, and brain and then quantified and characterized at different time points. In the brain, the Ly6Cint and Ly6Clow monocytes were associated with neuroinflammation, while Ly6Chi and Ly6Cint were mobilized from the peripheral blood to the brain for resolution. During neuroinflammation, CD36 and CD163 were both involved via splenic monocytes, whereas our results suggest that the low CD36 expression in the brain during the neuroinflammation phase was due to degradation. The resolution phase was characterized by increased expressions of CD36 and CD163 in blood Ly6Clow monocytes, a higher expression of CD36 in the microglia, and restored high expression levels of CD163 in Ly6Chi monocytes localized in the brain. Thus, our results suggest that increasing the expressions of CD36 and CD163 specifically in the brain during the neuroinflammatory phase contributes to its resolution.


Subject(s)
Malaria, Cerebral , Monocytes , Animals , Mice , Monocytes/metabolism , Malaria, Cerebral/drug therapy , Malaria, Cerebral/pathology , Mice, Inbred C57BL , Chloroquine/pharmacology , Brain/pathology , CD36 Antigens/metabolism
4.
HardwareX ; 11: e00290, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35509918

ABSTRACT

This work presents 4 open source potentiostat solutions for performing accurate measurements in cyclic voltammetry and square wave voltammetry at a low price. A very simple and easy to reproduce analogic board (c.a. 10 €) was driven either by a Teensy card from the company PJRC under an Arduino/Python software solution (39 €) or by an Analog Discovery 2 device from Digilent (less than 300 €). A smartphone Bluetooth Android interface was also created to circumvent the use of a computer. We demonstrated that our scheme is suitable for measurements in classical electrochemical conditions but also to carry out experiments with ultramicroelectrodes. We could thus reach a noise resolution of less than 1 pA. Scan rates of 8000 Vs-1 with ohmic drop compensation were also achieved. The device is suitable for teaching purposes but also for experiments in a participative science context on the ground, or countries with lower financial possibilities.

5.
Food Chem Toxicol ; 163: 112992, 2022 May.
Article in English | MEDLINE | ID: mdl-35395341

ABSTRACT

Exposure to pesticides through eyes, skin, ingestion and inhalation may affects human health by interfering with immune cells, such as macrophages. We evaluated, in vitro, the effect of six pesticides widely used in apple arboriculture on the functions of human monocyte-derived macrophages (hMDMs). hMDMs were cultured for 4 or 24 h with or without pesticides (0.01, 0.1, 1, 10 µmol.L-1). We showed that chlorpyrifos, thiacloprid, thiophanate, boscalid, and captan had little toxic effect at the tested concentrations, while dithianon had low-cytotoxicity at 10 µmol.L-1. While boscalid showed no effect on hMDMs function, thiophanate (0.01 µmol.L-1) stimulated with TPA and thiacloprid (1, 10 µmol.L-1) stimulated with zymosan activated ROS production. Chlorpyrifos, dithianon, and captan inhibited ROS production and TNF-α, IL-1ß pro-inflammatory cytokines. We established that dithianon (0.01-1 µmol.L-1) and captan (0.1, 1 µmol.L-1) induced mRNA expression of NQO1 and HMOX1 antioxidant enzymes. Dithianon also induced the mRNA expression of catalase, superoxide dismutase-2 at 10 µmol.L-1. Together, these results show that exposure to chlorpyrifos, dithianon, and captan induce immunomodulatory effects that may influence the disease fighting properties of monocytes/macrophages while pesticides such as thiacloprid, thiophanate and boscalid have little influence.


Subject(s)
Chlorpyrifos , Macrophages , Pesticides , Captan/pharmacology , Chlorpyrifos/toxicity , Cytokines/metabolism , Humans , Macrophages/drug effects , Pesticides/toxicity , RNA, Messenger , Reactive Oxygen Species/metabolism , Thiophanate/toxicity
6.
Infect Dis Poverty ; 11(1): 29, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287726

ABSTRACT

BACKGROUND: While malaria morbidity and mortality have declined since 2000, viral central nervous system infections appear to be an important, underestimated cause of coma in malaria-endemic Eastern Africa. We aimed to describe the etiology of non-traumatic comas in young children in Benin, as well as their management and early outcomes, and to identify factors associated with death. METHODS: From March to November 2018, we enrolled all HIV-negative children aged between 2 and 6 years, with a Blantyre Coma Score ≤ 2, in this prospective observational study. Children were screened for malaria severity signs and assessed using a systematic diagnostic protocol, including blood cultures, malaria diagnostics, and cerebrospinal fluid analysis using multiplex PCR. To determine factors associated with death, univariate and multivariate analyses were performed. RESULTS: From 3244 admissions, 84 children were included: malaria was diagnosed in 78, eight of whom had a viral or bacterial co-infection. Six children had a non-malarial infection or no identified cause. The mortality rate was 29.8% (25/84), with 20 children dying in the first 24 h. Co-infected children appeared to have a poorer prognosis. Of the 76 children who consulted a healthcare professional before admission, only 5 were prescribed adequate antimalarial oral therapy. Predictors of early death were jaundice or increased bilirubin [odd ratio (OR)= 8.6; 95% confidential interval (CI): 2.03-36.1] and lactate > 5 mmol/L (OR = 5.1; 95% CI: 1.49-17.30). Antibiotic use before admission (OR = 0.1; 95% CI: 0.02-0.85) and vaccination against yellow fever (OR = 0.2, 95% CI: 0.05-0.79) protected against mortality. CONCLUSIONS: Infections were found in all children who died, and cerebral malaria was by far the most common cause of non-traumatic coma. Missed opportunities to receive early effective antimalarial treatment were common. Other central nervous system infections must be considered in their management. Some factors that proved to be protective against early death were unexpected.


Subject(s)
Bacterial Infections , Malaria, Cerebral , Benin/epidemiology , Child , Child, Preschool , Humans , Malaria, Cerebral/complications , Malaria, Cerebral/epidemiology , Odds Ratio , Prospective Studies
7.
BMC Complement Med Ther ; 21(1): 64, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588819

ABSTRACT

BACKGROUND: The disparity of harvesting locations can influence the chemical composition of a plant species, which could affect its quality and bioactivity. Terminalia albida is widely used in traditional Guinean medicine whose activity against malaria has been validated in vitro and in murine models. The present work investigated the antimalarial properties and chemical composition of two samples of T. albida collected from different locations in Guinea. METHOD: T. albida samples were collected in different locations in Guinea, in Dubréka prefecture (West maritime Guinea) and in Kankan prefecture (eastern Guinea). The identity of the samples was confirmed by molecular analysis. In vitro antiplasmodial activity of the two extracts was determined against the chloroquine resistant strain PfK1. In vivo, extracts (100 mg/kg) were tested in two experimental murine models, respectively infected with P. chabaudi chabaudi and P. berghei ANKA. The chemical composition of the two samples was assessed by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. RESULTS: In vitro, the Dubréka sample (TaD) was more active with an IC50 of 1.5 µg/mL versus 8.5 µg/mL for the extract from Kankan (TaK). In vivo, the antiparasitic effect of TaD was substantial with 56% of parasite inhibition at Day 10 post-infection in P. chabaudi infection and 61% at Day 8 in P. berghei model, compared to 14 and 19% inhibition respectively for the treatment with TaK. In addition, treatment with TaD further improved the survival of P. berghei infected-mice by 50% at Day 20, while the mortality rate of mice treated with Tak was similar to the untreated group. The LC/MS analysis of the two extracts identified 38 compounds, 15 of which were common to both samples while 9 and 14 other compounds were unique to TaD and TaK respectively. CONCLUSION: This study highlights the variability in the chemical composition of the species T. albida when collected in different geographical locations. These chemical disparities were associated with variable antimalarial effects. From a public health perspective, these results underline the importance of defining chemical fingerprints related to botanical species identification and to biological activity, for the plants most commonly used in traditional medicine.


Subject(s)
Antimalarials/chemistry , Malaria/drug therapy , Phytotherapy , Plant Extracts/chemistry , Plasmodium/drug effects , Terminalia/chemistry , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Female , Guinea , Malaria/parasitology , Male , Medicine, African Traditional , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Species Specificity , Terminalia/classification
8.
Cell Biol Toxicol ; 37(3): 379-400, 2021 06.
Article in English | MEDLINE | ID: mdl-32712770

ABSTRACT

Ziram, a zinc dithiocarbamate is widely used worldwide as a fungicide in agriculture. In order to investigate ziram-induced changes in macrophage functions and polarization, human monocytes-derived macrophages in culture were treated with ziram at 0.01-10 µmol.L-1 for 4-24 h. To characterize zinc involvement in these changes, we also determined the effects of disulfiram alone (dithiocarbamate without zinc) or in co-incubation with ZnSO4. We have shown that ziram and disulfiram at 0.01 µmol.L-1 increased zymosan phagocytosis. In contrast, ziram at 10 µmol.L-1 completely inhibited this phagocytic process, the oxidative burst triggered by zymosan and the production of TNF-α, IL-1ß, IL-6, and CCL2 triggered by LPS. Disulfiram had the same effects on these macrophages functions only when combined with zinc (10 µmol.L-1). In contrast, at 10 µmol.L-1 ziram and zinc associated-disulfiram induced expression of several antioxidants genes HMOX1, SOD2, and catalase, which could suggest the induction of oxidative stress. This oxidative stress could be involved in the increase in late apoptosis induced by ziram (10 µmol.L-1) and zinc associated-disulfiram. Concerning gene expression profiles of membrane markers of macrophage polarization, ziram at 10 µmol.L-1 had two opposite effects. It inhibited the gene expression of M2 markers (CD36, CD163) in the same way as the disulfiram-zinc co-treatment. Conversely, ziram induced gene expression of other M2 markers CD209, CD11b, and CD16 in the same way as treatment with zinc alone. Disulfiram-zinc association had no significant effects on these markers. These results taken together show that ziram via zinc modulates macrophages to M2-like anti-inflammatory phenotype which is often associated with various diseases.


Subject(s)
Disulfiram/pharmacology , Oxidative Stress/drug effects , Zinc/pharmacology , Ziram/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Polarity/drug effects , Chemokine CCL2/genetics , Fungicides, Industrial/adverse effects , Fungicides, Industrial/pharmacology , Humans , Interleukin-1beta/genetics , Interleukin-6/genetics , Macrophages/drug effects , Oxidative Stress/genetics , Tumor Necrosis Factor-alpha/genetics
9.
Cell Rep ; 30(13): 4386-4398.e5, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234475

ABSTRACT

Colonic macrophages are considered to be major effectors of inflammatory bowel diseases (IBDs) and the control of gut inflammation through C-type lectin receptors is an emerging concept. We show that during colitis, the loss of dectin-1 on myeloid cells prevents intestinal inflammation, while the lack of mannose receptor (MR) exacerbates it. A marked increase in dectin-1 expression in dextran sulfate sodium (DSS)-exposed MR-deficient mice supports the critical contribution of dectin-1 to colitis outcome. Dectin-1 is crucial for Ly6ChighCCR2high monocyte population enrichment in the blood and their recruitment to inflamed colon as precursors of inflammatory macrophages. Dectin-1 also promotes inflammasome-dependent interleukin-1ß (IL-1ß) secretion through leukotriene B4 production. Interestingly, colonic inflammation is associated with a concomitant overexpression of dectin-1/CCL2/LTA4H and downregulation of MR on macrophages from IBD patients. Thus, MR and dectin-1 on macrophages are important mucosal inflammatory regulators that contribute to the intestinal inflammation.


Subject(s)
Inflammation/metabolism , Intestines/pathology , Lectins, C-Type/metabolism , Macrophages/metabolism , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism , Adult , Aged , Aged, 80 and over , Animals , Antigens, Ly/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Chemokine CCL2/metabolism , Colitis/pathology , Colon/pathology , Down-Regulation , Female , Humans , Inflammasomes/metabolism , Inflammatory Bowel Diseases/pathology , Interleukin-1beta/metabolism , Leukotriene B4/metabolism , Male , Mannose Receptor , Mice, Inbred C57BL , Middle Aged , Receptors, CCR2/metabolism , Signal Transduction , Young Adult
10.
J Ethnopharmacol ; 249: 112187, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31476439

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is still a highly challenging public health issue in southern Lao PDR, with increasing cases of artemisinin resistance and Plasmodium vivax infections which are more complicated to treat. Traditional medicine has a long history of use in Laos, and is primarily practised by traditional village healers, who possess unique bodies of transmitted knowledge focused on herbal prescriptions, including those for the treatment of malaria. Villagers also use plants for healthcare in the home. The aim of the study is to document local fever concepts and use of herbal remedies, and examine whether they may have potential as complementary treatments against malaria. MATERIALS AND METHODS: The study took place in Champasak province in the far south of Laos, in primarily lowland areas. First, 35 traditional healers across the 10 districts of the province were interviewed to elicit details about knowledge and treatment of fevers. Second, a household survey was conducted in a village in a malaria-endemic area; 97 households were interviewed on fever incidence, differentiation, treatment-seeking behaviour and knowledge of plant-based remedies for fevers. Plants indicated by both healers and villagers were collected and voucher specimens deposited in the herbarium of the National University of Laos for identification. RESULTS: Malaria is a well-known pathology among the healers and villagers of lowland Champasak province; biomedical treatments are preferentially used, but traditional medicine is a popular complementary method, especially in chronic cases with additional symptoms. 30 different fever types were recorded, which were usually named symptomatically, and grouped into 12 categories. Some were described as forms of malaria, which was conceived as a dynamic, changing pathology affecting many body systems. Healers formulate treatments based on symptoms and the person's constitution, and with the intention of creating specific pharmacological actions associated with temperature or flavours. 11 of the healers gave prescriptions for malaria (27 in total), including 47 identified plant species. The most-used plants (4 or more use-reports) were also the most cited in the literature for use against malaria, demonstrating a correspondence between Lao healers and other traditional medical systems. Furthermore, some of these species show promising results for future research, especially Amorphophallus paeniifolius (Dennst.) Nicolson and Alocasia macrorrhizos (L.) G. Don. CONCLUSION: Traditional healers are important actors in the treatment of malaria in southern Laos, and herbal remedies should be evaluated further by the use of reverse treatment outcome trials, especially those which may be of use as complementary remedies in treating P. vivax. Initiatives on knowledge transmission, medicinal plant conservation and healthcare integration are also urgently needed.


Subject(s)
Malaria/drug therapy , Plant Preparations/pharmacology , Aged , Aged, 80 and over , Artemisinins/pharmacology , Fever/drug therapy , Forests , Humans , Laos , Male , Medicine, African Traditional/methods , Middle Aged , Phytotherapy/methods , Plants, Medicinal/chemistry
11.
Malar J ; 18(1): 431, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31852507

ABSTRACT

BACKGROUND: The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria. METHODS: In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7-8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns. RESULTS: In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 µg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids. CONCLUSION: The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Malaria, Cerebral/prevention & control , Plant Extracts/pharmacology , Reactive Oxygen Species/pharmacology , Terminalia/chemistry , Animals , Antimalarials/chemistry , Female , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects
12.
Sci Rep ; 9(1): 17545, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772386

ABSTRACT

Monocytes are plastic heterogeneous immune cells involved in host-parasite interactions critical for malaria pathogenesis. Human monocytes have been subdivided into three populations based on surface expression of CD14 and CD16. We hypothesised that proportions and phenotypes of circulating monocyte subsets can be markers of severity or fatality in children with malaria. To address this question, we compared monocytes sampled in children with uncomplicated malaria, severe malarial anaemia, or cerebral malaria. Flow cytometry was used to distinguish and phenotype monocyte subsets through CD14, CD16, CD36 and TLR2 expression. Data were first analysed by univariate analysis to evaluate their link to severity and death. Second, multinomial logistic regression was used to measure the specific effect of monocyte proportions and phenotypes on severity and death, after adjustments for other variables unrelated to monocytes. Multivariate analysis demonstrated that decreased percentages of non-classical monocytes were associated with death, suggesting that this monocyte subset has a role in resolving malaria. Using univariate analysis, we also showed that the role of non-classical monocytes involves a mostly anti-inflammatory profile and the expression of CD16. Further studies are needed to decipher the functions of this sub-population during severe malaria episodes, and understand the underlying mechanisms.


Subject(s)
Anemia/psychology , Malaria, Cerebral/immunology , Malaria, Falciparum/immunology , Monocytes , Age Factors , Anemia/immunology , Anemia/mortality , Child, Preschool , Cytokines/blood , Female , Humans , Infant , Leukocyte Count , Lipopolysaccharide Receptors/immunology , Malaria, Cerebral/mortality , Malaria, Falciparum/mortality , Male , Monocytes/immunology , Parasitemia/immunology , Parasitemia/mortality , Receptors, IgG/immunology , Risk Factors , Severity of Illness Index , Sex Factors
13.
Molecules ; 24(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618826

ABSTRACT

Dunnione, a natural product isolated from the leaves of Streptocarpus dunnii (Gesneriaceae), acts as a substrate for quinone-reductases that may be associated with its antimalarial properties. Following our exploration of reactive oxygen species-producing compounds such as indolones, as possible new approaches for the research of new ways to treat this parasitosis, we explored derivatives of this natural product and their possible antiplasmodial and antimalarial properties, in vitro and in vivo, respectively. Apart from one compound, all the products tested had weak to moderate antiplasmodial activities, the best IC50 value being equal to 0.58 µM. In vivo activities in the murine model were moderate (at a dose of 50 mg/kg/mice, five times higher than the dose of chloroquine). These results encourage further pharmacomodulation steps to improve the targeting of the parasitized red blood cells and antimalarial activities.


Subject(s)
Antimalarials/chemistry , Naphthoquinones/chemistry , Quinone Reductases/chemistry , Animals , Antimalarials/pharmacology , Disease Models, Animal , HeLa Cells , Humans , Mice , Molecular Structure , Naphthoquinones/pharmacology , Quinone Reductases/metabolism , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Substrate Specificity
14.
PLoS One ; 14(6): e0218012, 2019.
Article in English | MEDLINE | ID: mdl-31251748

ABSTRACT

BACKGROUND: PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging. The aim of our study is to identify the different PfEMP1 proteins variants expressed within patient samples, and therefore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated malaria or severe malaria in malaria endemic setting in Cotonou, Benin. METHODS: We performed a multi-omic approach to decipher PfEMP1 expression at the patient's level in different clinical settings. Using a combination of whole genome sequencing approach and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new custom protein database. This database was used for protein identification in mass spectrometry analysis. RESULTS: The differential expression analysis of RNAsequencing data shows an increased expression of the var domains transcripts DBLα1.7, DBLα1.1, DBLα2 and DBLß12 in samples from patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associated to PfEMP1 proteins in mass spectrometry. CONCLUSION: We highlighted the diversity of the PfEMP1 sequences from field sample compared to reference sequences repositories and confirmed the validity of our approach. These findings should contribute to further vaccine development strategies based on PfEMP1 proteins.


Subject(s)
Genomics , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Tandem Mass Spectrometry , Benin , Chromatography, Liquid , Humans , Peptides/metabolism , Proteogenomics , Proteome/metabolism , Protozoan Proteins/genetics
15.
BMJ Open ; 9(5): e027378, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31142528

ABSTRACT

INTRODUCTION: In 2016, an estimated 216 million cases and 445 000 deaths of malaria occurred worldwide, in 91 countries. In Benin, malaria causes 26.8% of consultation and hospitalisation motif in the general population and 20.9% in children under 5 years old.The goal of the NeuroCM project is to identify the causative factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the aetiologies and management of non-malarial non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria. METHODS AND ANALYSIS: This is a prospective, case-control study comparing cerebral malaria to uncomplicated malaria and non-malarial non-traumatic coma. This study takes place in Benin, precisely in Cotonou for children with coma and in Sô-Ava district for children with uncomplicated malaria. We aim to include 300 children aged between 24 and 71 months and divided in three different clinical groups during 12 months (from December 2017 to November 2018) with a 21 to 28 days follow-up for coma. Study data, including clinical, biological and research results will be collected and managed using CSOnline-Ennov Clinical. ETHICS AND DISSEMINATION: Ethics approval for the NeuroCM study has been obtained from Comité National d'Ethique pour la Recherche en santé of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been approved by Comité consultatif de déontologie et d'éthique of Institut de Recherche pour le Développement (IRD; 10/24/2017). The study results will be disseminated through the direct consultations with the WHO's Multilateral Initiative on Malaria (TDR-MIM) and Roll Back Malaria programme, through scientific meetings and peer-reviewed publications in scientific or medical journals, and through guidelines and booklets.


Subject(s)
Malaria, Cerebral/pathology , Malaria, Falciparum/pathology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity , Research Design , Benin , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Prospective Studies
16.
Malar J ; 17(1): 68, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29402267

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian plant used in traditional medicine. METHODS: Terminalia macroptera was collected in Mali. Leaves (TML) and roots ethanolic extracts (TMR) were prepared and tested at 2000 mg/kg for in vivo acute toxicity in Albino Swiss mice. Antiplasmodial activity of the extracts was assessed against a chloroquine resistant strain P. falciparum (FcB1) in vitro. In vivo, anti-malarial efficacy was assessed by a 4-day suppressive test at 100 mg/kg in two malaria murine models of uncomplicated malaria (Plasmodium chabaudi chabaudi infection) and cerebral malaria (Plasmodium berghei strain ANKA infection). Constituents of TMR were characterized by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation pattern. RESULTS: Lethal dose of TML and TMR were greater than 2000 mg/kg in Albino Swiss mice. According to the OECD's Globally Harmonized System of Classification, both extracts are non-toxic orally. Antiplasmodial activity of T. macroptera extracts was confirmed in vitro against P. falciparum FcB1 strain with IC50 values of 1.2 and 1.6 µg/mL for TML and TMR, respectively. In vivo, oral administration of TML and TMR induced significant reduction of parasitaemia (37.2 and 46.4% respectively) in P. chabaudi chabaudi infected mice at the 7th day of infection compared to untreated mice. In the cerebral malaria experimental model, mice treated with TMR and TML presented respectively 50 and 66.7% survival rates at day 9 post-infection when all untreated mice died. Eleven major compounds were found in TMR. Among them, several molecules already known could be responsible for the antiplasmodial activity of the roots extract of T. macroptera. CONCLUSIONS: This study confirms both safety and anti-malarial activity of T. macroptera, thus validating its traditional use.


Subject(s)
Antimalarials/pharmacology , Plasmodium berghei/drug effects , Plasmodium chabaudi/drug effects , Terminalia/chemistry , Animals , Female , Mali , Medicine, Traditional , Mice , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Plants, Medicinal , Toxicity Tests, Acute
17.
Front Immunol ; 8: 1650, 2017.
Article in English | MEDLINE | ID: mdl-29250064

ABSTRACT

Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1ß, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1ß release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1ß and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.

18.
Malar J ; 14: 358, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26385579

ABSTRACT

BACKGROUND: Pregnancy-associated malaria (PAM) constitutes one of the most severe forms of malaria infection leading to fetal growth restriction and high risk of infant death. The severity of the pathology is largely attributed to the recruitment of monocytes and macrophages in the placenta which is evidenced by dysregulated inflammation found in placental blood. Importantly, CD36(+) monocytes/macrophages are also thought to participate in the tight control of the pro- and anti-inflammatory responses following Plasmodium detection through elimination of apoptotic cells and malaria-infected erythrocytes, internalization and recycling of oxidized forms of low-density lipoprotein and collaboration with TLR2 in pro-inflammatory response. Interestingly, previous work demonstrated that CD36 expression was upregulated on inflammatory macrophages following stimulation of the Nrf2 transcription factor, whilst the PPARγ pathway was inhibited and non-functional in the same inflammatory conditions. This current study examined the possible role of Nrf2-driven gene expression, CD36 and Haem-Oxygenase-1 (HO-1), in PAM clinical outcomes. METHODS: Clinical data and biological samples including peripheral blood mononuclear cells were collected from 27 women presenting PAM. Polychromatic flow cytometry was used to characterize innate immune cell subpopulations and quantify CD36 protein expression level on monocytes. mRNA levels of CD36, PPARγ, Nrf2 and HO-1 were determined by qPCR and related to clinical outcomes. Finally, the capacity of monocytes to modulate CD36 expression upon rosiglitazone or sulforaphane treatment, two respective PPARγ or Nrf2 activators, was also investigated. RESULTS: The CD36 receptor, mostly expressed by CD14(+) circulating monocytes, statistically correlated with increased infant birth weights. Interestingly, mRNA levels of the transcription factor Nrf2 and the enzyme HO-1 also correlated with lower parasitaemia and increased infant birth weight, while PPARγ mRNA levels did not. Finally, monocytes isolated from low infant birth weight pregnant women were capable of up-regulating CD36 via the Nrf2 pathway ex vivo. CONCLUSIONS: Altogether these results suggest that Nrf2-driven CD36 and HO-1 expression on innate immune cells could contribute to a protective and detoxifying mechanism during PAM. More powered and mechanistical studies are however needed to strengthen the conclusions of this study.


Subject(s)
CD36 Antigens/genetics , Heme Oxygenase-1/genetics , Malaria, Falciparum/epidemiology , NF-E2-Related Factor 2/genetics , Parasitemia/epidemiology , Plasmodium falciparum/physiology , Pregnancy Complications, Parasitic/epidemiology , Adolescent , Adult , Benin/epidemiology , Birth Weight , CD36 Antigens/metabolism , Female , Heme Oxygenase-1/metabolism , Humans , Infant, Newborn , Malaria, Falciparum/parasitology , Monocytes/metabolism , NF-E2-Related Factor 2/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Parasitemia/parasitology , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Up-Regulation , Young Adult
19.
PLoS One ; 9(12): e114401, 2014.
Article in English | MEDLINE | ID: mdl-25479608

ABSTRACT

The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.


Subject(s)
Gene Expression Regulation , Malaria, Cerebral/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/biosynthesis , Transcriptome , Child , Child, Preschool , Female , Humans , Infant , Male
20.
Mol Ecol ; 23(8): 1979-93, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24834503

ABSTRACT

Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte-binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba-140, eba-175, eba-181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba-140 seemed to be under stronger diversifying selection in South America than eba-175. In contrast, eba-181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.


Subject(s)
Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Africa , Carrier Proteins/genetics , DNA, Protozoan/genetics , Erythrocytes/parasitology , Genetics, Population , Humans , Membrane Proteins , Molecular Sequence Data , Sequence Analysis, DNA , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...