Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607124

ABSTRACT

The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative analysis of the graphitization process in various types of hydrogenated NDs, considering differences in ND size and quality. We prepared three types of hydrogenated NDs: high-pressure high-temperature NDs (HPHT ND-H; 0-30 nm), conventional detonation nanodiamonds (DND-H; ~5 nm), and size- and nitrogen-reduced hydrogenated nanodiamonds (snr-DND-H; 2-3 nm). The samples underwent annealing in an ultra-high vacuum and sputtering by Ar cluster ion beam (ArCIB). Samples were investigated by in situ X-ray photoelectron spectroscopy (XPS), in situ ultraviolet photoelectron spectroscopy (UPS), and Raman spectroscopy (RS). Our investigation revealed that the graphitization temperature of NDs ranges from 600 °C to 700 °C and depends on the size and crystallinity of the NDs. Smaller DND particles with a high density of defects exhibit a lower graphitization temperature. We revealed a constant energy difference of 271.3 eV between the sp-peak in the valence band spectra (at around 13.7 eV) and the sp3 component in the C 1s core level spectra (at 285.0 eV). The identification of this energy difference helps in calibrating charge shifts and serves the unambiguous identification of the sp3 bond contribution in the C 1s spectra obtained from ND samples. Results were validated through reference measurements on hydrogenated single crystal C(111)-H and highly-ordered pyrolytic graphite (HOPG).

2.
Analyst ; 148(16): 3806-3816, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37463011

ABSTRACT

Urinary tract infections (UTI) are among the most frequent nosocomial infections. A fast identification of the pathogen and assignment of Gram type could help to prescribe most suitable treatments. Raman spectroscopy holds high potential for fast and reliable bacterial pathogens identification. While most studies so far have focused on individual pathogens or artificial mixtures, this contribution aims to translate the analysis to primary urine samples from patients with suspected UTIs. For this, we have included 59 primary urine samples out of which 29 were diagnosed as mixed infections. For Raman analysis, we first trained two classification models based on principal component analysis - linear discriminant analysis (PCA-LDA) with more than 3500 Raman spectra of 85 clinical isolates from 23 species in order to (1) identify the Gram type of the bacteria and (2) assign family membership to one of the six most abundant bacterial families in urinary tract infections (Enterobacteriaceae, Morganellaceae, Pseudomonadaceae, Enterococcaceae, Staphylococcaceae and Streptococcaceae). The classification models were applied to artificial mixtures of Gram positive and Gram negative bacteria to correctly predict mixed infections with an accuracy of 75%. Raman scans of dried droplets did not yet yield optimal classification results on family level. When translating the method to primary urine samples, we observed a strong bias towards Gram negative bacteria, on family level towards Morganellaceae, which reduced prediction accuracy. Spectral differences were observed between isolates grown on standard growth medium and bacteria of the same strain when characterized directly from the patient. Thus, improvement of the classification accuracy is expected with a larger data base containing also bacteria measured directly from the urine sample.


Subject(s)
Coinfection , Urinary Tract Infections , Urinary Tract , Humans , Gram-Negative Bacteria , Anti-Bacterial Agents , Gram-Positive Bacteria , Bacteria , Urinary Tract Infections/diagnosis , Spectrum Analysis, Raman/methods
3.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771840

ABSTRACT

If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp2 "soft" carbon phase to protect Zr alloy fuel rods (ZIRLO®) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO® (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp2 "soft" carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...