Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 77(3): 718-730, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36680555

ABSTRACT

Geneflow across populations is a critical determinant of population genetic structure, divergence, and local adaptation. While evolutionary theory typically envisions geneflow as a continuous connection among populations, many processes make it fluctuating and intermittent. We analyze a mainland-island model where migration occurs as recurrent "pulses." We derive mathematical predictions regarding how the level of migration pulsedness affects the effective migration rate, for neutral and selected mainland alleles. We find that migration pulsedness can either decrease or increase geneflow, depending on the selection regime. Pulsedness increases geneflow for sufficiently (counter)selected alleles (s

Subject(s)
Adaptation, Physiological , Biological Evolution , Alleles , Acclimatization , Selection, Genetic
2.
Ecol Lett ; 23(8): 1263-1275, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32476239

ABSTRACT

Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine-tuning, and co-adapted communities, where traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-stability and biodiversity-invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity-productivity relationships were generally less positive among co-adapted communities, with reduced contribution of sampling effects. The effect of community-adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co-adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short-term experiments and observations following recent changes may not be safely extrapolated into the future, once eco-evolutionary feedbacks have taken place.


Subject(s)
Biodiversity , Ecosystem , Acclimatization , Biological Evolution , Phenotype
3.
Proc Natl Acad Sci U S A ; 114(31): 8193-8198, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28652327

ABSTRACT

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...