Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gynecol Obstet Hum Reprod ; 53(8): 102808, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825167

ABSTRACT

OBJECTIVE: The presence of embryonic cell-free DNA (cfDNA) in spent embryo culture media (SECM) may offer valuable advantages for non-invasive testing of embryo ploidy or genetic characteristics compared to trophectoderm (TE) biopsy. This study aimed to assess the diagnostic potential of SECM cfDNA as a non-invasive sample for chromosomal copy number testing in blastocysts within the clinical setting of in-vitro fertilization. METHOD: This prospective observational study collected 28 SECM cfDNA samples matched with TE biopsy samples from 21 infertile couples who underwent IVF-PGT-A cycles. SECM samples were obtained from blastocysts that were cultured for approximately 5/6 days in an uninterrupted time-lapse incubator. Both sets of samples were collected during the biopsy procedure. The Variseq Illumina platform was utilized for ploidy measurement. The study evaluated the informativity and interpretability of SECM cfDNA, concordance of general ploidy status, and sex chromosome agreement between the two sample types. RESULTS: SECM cfDNA had a high informativity rate (100 %) after double amplification procedure, with a result interpretability of 93 %. Two out of the 28 SECM cfDNA samples were uninterpretable and regarded as overall noise samples. The diagnostic potential of SECM cfDNA, when compared to TE biopsy the standard reference, was relatively low at 50 %. Maternal DNA contamination remains the major obstacle that hinders the widespread clinical adoption of SECM cfDNA in the routine practice of pre-implantation genetic testing for aneuploidy within IVF settings. CONCLUSION: A significant modification must be implemented in the IVF laboratory to minimize DNA contamination and this necessitates suggesting adjustments to oocyte denudation, embryo culture media preparation, and sample collection procedures.

2.
J Assist Reprod Genet ; 40(6): 1231-1242, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37129724

ABSTRACT

The presence of cell-free DNA in spent embryo culture media (SECM) has unveiled its possible utilization for embryonic ploidy determination, opening new frontiers for the development of a non-invasive pre-implantation genetic screening technique. While a growing number of studies have shown a high concordance between genetic screening using cell-free DNA (cfDNA) and trophectoderm (TE), the mechanism pertaining to the release of cfDNA in SECM is largely unknown. This review aims to evaluate research evidence on the origin and possible mechanisms for the liberations of embryonic DNA in SECM, including findings on the self-correction abilities of embryos which might contribute to the presence of cfDNA. Several databases including EMBASE, PUBMED, and SCOPUS were used to retrieve original articles, reviews, and opinion papers. The keywords used for the search were related to the origins and release mechanism of cfDNA. cfDNA in SECM originates from embryonic cells and, at some levels, non-embryonic cells such as maternal DNA and exogenous foreign DNA. The apoptotic pathway has been demonstrated to eliminate aneuploid cells in developing mosaic embryos which might culminate to the release of cfDNA in SECM. Nonetheless, there is a recognized need for exploring other pathways such as cross-talk molecules called extracellular vesicles (EVs) made of small, round bi-layer membranes. During in vitro development, embryos physiologically and actively expel EVs containing not only protein and microRNA but also embryonic DNA, hence, potentially releasing cfDNA of embryonic origin into SECM through EVs.


Subject(s)
Cell-Free Nucleic Acids , Preimplantation Diagnosis , Humans , Female , Pregnancy , Culture Media/metabolism , Cell-Free Nucleic Acids/genetics , Embryo Implantation , Blastocyst/metabolism , Aneuploidy , DNA/genetics , DNA/metabolism , Embryo Culture Techniques , Preimplantation Diagnosis/methods
3.
J Hum Reprod Sci ; 15(1): 3-11, 2022.
Article in English | MEDLINE | ID: mdl-35494192

ABSTRACT

Fertility preservation through gamete vitrification has become one of the critical strategies to secure a childbearing potential in patients who are diagnosed with cancer or risks of infertility. Preserving the gametes would prevent the deleterious effects of cancer drugs or radiotherapy exposure on the quality of the gametes. Furthermore, in vitro fertilisation of vitrified mature human oocytes has lately demonstrated promising results that are reflected in the increased survival rate of thawed oocytes and the resultant clinical pregnancy rate. However, limitations in the cryopreservation of mature oocytes of cancer patients persist. Ovarian stimulation protocols which comprise administering gonadotrophin-releasing hormones could aggravate cancer or delay essential cancer therapy. Considering such circumstances, vitrification of immature oocytes would become a rational option. While the vitrification procedure of mature oocytes has been established, the vitrification of immature oocytes remains controversial due to a low post-thaw in vitro maturation and fertilisation rate. Apparent cryoinjuries to the immature oocytes post thawing or warming have been observed in both human and animal model oocytes. An alternative strategy was therefore proposed to improve the effectiveness of utilising immature oocytes for fertility preservation by conducting the in vitro oocyte maturation process first before vitrification. This method has prevailed, especially in oncofertility patients. Although the success rate of the clinical outcomes remains low, this approach, in conjugation with proper counselling, might provide oncofertility patients with an opportunity to preserve their reproductive potential.

4.
BMC Mol Cell Biol ; 22(1): 20, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726662

ABSTRACT

BACKGROUND: Bioinformatic genome surveys indicate that self-cleaving ribonucleic acids (ribozymes) appear to be widespread among all domains of life, although the functions of only a small number have been validated by biochemical methods. Alternatively, cell-based reporter gene assays can be used to validate ribozyme function. However, reporter activity can be confounded by phenomena unrelated to ribozyme-mediated cleavage of RNA. RESULTS: We established a ribozyme reporter system in Escherichia coli in which a significant reduction of reporter activity is manifest when an active ribozyme sequence is fused to the reporter gene and the expression of a foreign Bacillus subtilis RNaseJ1 5' exonuclease is induced from a chromosomally-integrated gene in the same cell. CONCLUSIONS: The reporter system could be useful for validating ribozyme function in candidate sequences identified from bioinformatics.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Escherichia coli/enzymology , Phosphodiesterase I/genetics , RNA, Catalytic/metabolism , Bacillus subtilis/genetics , Escherichia coli/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...