Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(11): e10159, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034328

ABSTRACT

Eelgrass supports diverse benthic communities that ensure a variety of ecosystem functions. To better understand the ecological processes that shape community composition in eelgrass at local and regional scales, taxonomic and functional α- and ß-diversity were quantified for communities inhabiting five meadows in France. The extent to which environmental factors affected local and regional benthic communities was quantified by considering their direct and indirect effects (through morphological traits of eelgrass) using piecewise structural equation modeling (pSEM). Communities supported by eelgrass had higher species abundances, as well as taxonomic and functional diversity compared to nearby bare sediments. No significant differences were found between communities from the center relative to the edges of meadows, indicating that both habitats provide similar benefits to biodiversity. The presence of a few abundant species and traits suggests moderate levels of habitat filtering and close associations of certain species with eelgrass. Nevertheless, high turnover of a large number of rare species and traits was observed among meadows, resulting in meadows being characterized by their own distinct communities. High turnover indicates that much of the community is not specific to eelgrass, but rather reflects local species pools. pSEM showed that spatial variation in community composition (ß-diversity) was primarily affected by environmental conditions, with temperature, current velocity, and tidal amplitude being the most significant explanatory variables. Local richness and abundance (α-diversity) were affected by both environment and morphological traits. Importantly, morphological traits of Zostera marina were also influenced by environmental conditions, revealing cascading effects of the environment on assemblages. In sum, the environment exerted large effects on community structure at both regional and local scales, while plant traits were only pertinent in explaining local diversity. This complex interplay of processes acting at multiple scales with indirect effects should be accounted for in conservation efforts that target the protection of biodiversity.

2.
Zool Stud ; 62: e15, 2023.
Article in English | MEDLINE | ID: mdl-37533559

ABSTRACT

A new species of polyclad flatworm, Idiostylochus tortuosus gen. nov., sp. nov. (Polycladida, Idioplanidae), from Arcachon Bay (France) is described. This description is based on a morphological analysis and a molecular analysis using partial sequences of the 28S and cytochrome Oxidase I (COI) genes. After the molecular analysis Idiostylochus gen. nov. appears to be the second genus of the Family Idioplanidae and closely related to the family Latocestidae as well as the genera Leptostylochus and Mirostylochus. The molecular data revealed that the new species may belong to an Indonesian or Indo-Pacific family, closely related to genera with origins in South Pacific Ocean waters. This species was found feeding on the oysters and mussels of the Arcachon farms.

3.
Sci Total Environ ; 857(Pt 3): 159619, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36280086

ABSTRACT

Along with their important diversity, coastal ecosystems receive various amounts of nutrients, principally arising from the continent and from the related human activities (mainly industrial and agricultural activities). During the 20th century, nutrients loads have increased following the increase of both the global population and need of services. Alongside, climate change including temperature increase or atmospheric circulation change has occurred. These processes, Ecosystem state changes are hard to monitor and predict. To study the long-term changes of nutrients concentrations in coastal ecosystems, eleven French coastal ecosystems were studied over 20 years as they encompass large climatic and land pressures, representative of temperate ecosystems, over a rather small geographical area. Both univariate (time series decomposition) and multivariate (relationships between ecosystems and drivers) statistical analyses were used to determine ecosystem trajectories as well as typologies of ecosystem trajectories. It appeared that most of the French coastal ecosystems exhibited trajectories towards a decrease in nutrients concentrations. Differences in trajectories mainly depended on continental and human influences, as well as on climatic regimes. One single ecosystem exhibited very different trajectories, the Arcachon Bay with an increase in nutrients concentrations. Ecosystem trajectories based on ordination techniques were proven to be useful tools to monitor ecosystem changes. This study highlighted the importance of local environments and the need to couple uni- and multi-ecosystem studies. Although the studied ecosystems were influenced by both local and large-scale climate, by anthropogenic activities loads, and that their trajectories were mostly similar based on their continental influence, non-negligible variations resulted from their internal functioning.


Subject(s)
Climate Change , Ecosystem , Humans , Human Activities , Nutrients
4.
Mar Drugs ; 20(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35877754

ABSTRACT

Blooms of the benthic toxic dinoflagellate genus Ostreopsis have been recorded more frequently during the last two decades, particularly in warm temperate areas such as the Mediterranean Sea. The proliferation of Ostreopsis species may cause deleterious effects on ecosystems and can impact human health through skin contact or aerosol inhalation. In the eastern Atlantic Ocean, the toxic O. cf. ovata has not yet been reported to the north of Portugal, and the only species present further north was O. cf. siamensis, for which the toxic risk is considered low. During summer blooms of unidentified Ostreopsis species on the French Basque coast (Atlantic) in 2020 and 2021, people suffered from irritations and respiratory disorders, and the number of analyzed cases reached 674 in 2021. In order to investigate the causes, sampling was carried out during summer 2021 to (i) taxonomically identify Ostreopsis species present using a molecular approach, (ii) isolate strains from the bloom and culture them, and (iii) characterize the presence of known toxins which may be involved. For the first time, this study reports the presence of both O. cf. siamensis and O. cf. ovata, for which the French Basque coast is a new upper distribution limit. Furthermore, the presence of ovatoxins a, b, c, and d in the environmental sample and in a cultivated strain in culture confirmed the toxic nature of the bloom and allowed identifying O. cf. ovata as the producer. The present data identify a new health risk in the area and highlight the extended distribution of some harmful dinoflagellates, presumably in relation to climate change.


Subject(s)
Dinoflagellida , Ecosystem , Atlantic Ocean , Humans , Mediterranean Sea , Portugal
5.
Environ Pollut ; 290: 118012, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34482248

ABSTRACT

Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters' Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.


Subject(s)
Ostreidae , Water Pollutants, Chemical , Animals , Bioaccumulation , Copper/analysis , Ecosystem , Environmental Monitoring , Humans , Infant , Isotopes , Water Pollutants, Chemical/analysis
6.
Nat Commun ; 10(1): 3356, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350407

ABSTRACT

Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fast-growing species recovered in some locations, making the net rate of change in seagrass area experience a reversal in the 2000s, while density metrics improved or remained stable in most sites. Our results demonstrate that decline is not the generalised state among seagrasses nowadays in Europe, in contrast with global assessments, and that deceleration and reversal of declining trends is possible, expectingly bringing back the services they provide.


Subject(s)
Magnoliopsida/growth & development , Biodiversity , Conservation of Natural Resources , Ecosystem , Europe , History, 20th Century , History, 21st Century , Magnoliopsida/classification , Marine Biology/history
7.
Front Plant Sci ; 9: 88, 2018.
Article in English | MEDLINE | ID: mdl-29449859

ABSTRACT

Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity.

8.
Mar Pollut Bull ; 134: 66-74, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29106936

ABSTRACT

Dwarf eelgrasses (Zostera noltei) populations have decreased since 2005 in Arcachon Bay (southwest France). Various stressors have been pointed out, however the role of xenobiotics like pesticides or copper (Cu) and of parameters like water temperature warming have not yet been explored. To determine their impact, Z. noltei individuals were collected in a pollution-free site and transferred to the laboratory in seawater microcosms. This dwarf eelgrass was exposed to a pesticide cocktail and copper, alone or simultaneously, at temperatures (10°C, 20°C, 28°C) representative of different seasons. After a two-week contamination, leaf growth, leaf bioaccumulation of Cu, and differential expression of target genes were studied. Eelgrasses bioaccumulated Cu regardless of the temperature, with reduced efficiency in the presence of the Cu and pesticide cocktail at the two higher temperatures. High temperature also exacerbated the effect of contaminants, leading to growth inhibition and differential gene expression. Mitochondrial activity was strongly impacted and higher mortality rates occurred. Experimental results have been confirmed during field survey. This is the first report on the impacts on Z. noltei of pesticides and Cu associate to temperature.


Subject(s)
Copper/toxicity , Pesticides/toxicity , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Zosteraceae/physiology , Bays , Copper/pharmacokinetics , France , Gene Expression Regulation, Plant/drug effects , Pesticides/pharmacokinetics , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Seasons , Temperature , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/pharmacokinetics , Zosteraceae/drug effects
9.
Environ Pollut ; 222: 393-403, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28089211

ABSTRACT

Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 µg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC10) (2 µg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide.


Subject(s)
Herbicides/toxicity , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Zosteraceae/drug effects , Bays , France , Glutathione Reductase/metabolism , Insecticides/toxicity , Zosteraceae/enzymology , Zosteraceae/metabolism
10.
Sci Total Environ ; 384(1-3): 293-305, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17568657

ABSTRACT

Ulva spp., the algae most responsible for green tides in Brittany (France), are found on the foreshore and in the most beachward wave area (MBWA) of many bays during green tide phenomena. These algae have recently been seen drifting at greater depths (reaching - 20 m). In view of the significant quantities of algae found at these depths, and the less favorable conditions for algal growth than in the intertidal zone, we attempted to determine if they could grow there. For that, during their maximum growth period (from May to July), algae were picked up at three stations located on the foreshore, in the MBWA and in the subtidal (deep) zones of the Bay of Douarnenez, and their nitrogen, carbon and chlorophyll a + b contents were determined, and their photosynthetic activity was compared in the laboratory. The intracellular concentrations did not differ much from one station to another, although in the subtidal zone, the irradiance and the nitrogen concentration in the ambient water were much lower than those measured on the foreshore and in the MBWA. Photosynthetic activity characterized by maximum amounts of oxygen produced at different irradiances and by saturating and compensating irradiance levels, was also quite similar at the three stations. The irradiance, temperature and salinity of the subtidal environment, together with the chemical and photosynthetic characteristics of the algae found in that area, are consistent with the hypothesis that they grow there, and that their nitrogen supply comes from nitrogen releases from sediments. Nevertheless, their growth rate is probably less than that of algae in the MBWA.


Subject(s)
Seawater/chemistry , Ulva/growth & development , Carbon/metabolism , Chlorophyll/metabolism , France , Nitrogen/metabolism , Photosynthesis , Sodium Chloride/chemistry , Temperature , Ulva/metabolism , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...