Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
PLoS One ; 18(11): e0294696, 2023.
Article in English | MEDLINE | ID: mdl-38032917

ABSTRACT

Gene-directed enzyme prodrug therapy is an emerging strategy for cancer treatment based on the delivery of a gene that encodes an enzyme that is able to convert a prodrug into a potent cytotoxin exclusively in target cancer cells. However, it is limited by the lack of suitable enzyme variants and a scarce choice of chemical bonds that could be activated. Therefore, this study is aimed to determine the capability of bacterial amidohydrolases YqfB and D8_RL to activate novel prodrugs and the effect such system has on the viability of eukaryotic cancer cells. We have established cancer cell lines that stably express the bacterial amidohydrolase genes and selected several N4-acylated cytidine derivatives as potential prodrugs. A significant decrease in the viability of HCT116 human colon cancer cell lines expressing either the YqfB or the D8_RL was observed after exposure to the novel prodrugs. The data we acquired suggests that bacterial YqfB and D8_RL amidohydrolases, together with the modified cytidine-based prodrugs, may serve as a promising enzyme-prodrug system for gene-directed enzyme prodrug therapy.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Prodrugs , Humans , Prodrugs/metabolism , Amidohydrolases/genetics , Cytidine/pharmacology , Colonic Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use
3.
Commun Biol ; 6(1): 1092, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891428

ABSTRACT

In all domains of life, transfer RNAs (tRNAs) contain post-transcriptionally sulfur-modified nucleosides such as 2- and 4-thiouridine. We have previously reported that a recombinant [4Fe-4S] cluster-containing bacterial desulfidase (TudS) from an uncultured bacterium catalyzes the desulfuration of 2- and 4-thiouracil via a [4Fe-5S] cluster intermediate. However, the in vivo function of TudS enzymes has remained unclear and direct evidence for substrate binding to the [4Fe-4S] cluster during catalysis was lacking. Here, we provide kinetic evidence that 4-thiouridine-5'-monophosphate rather than sulfurated tRNA, thiouracil, thiouridine or 4-thiouridine-5'-triphosphate is the preferred substrate of TudS. The occurrence of sulfur- and substrate-bound catalytic intermediates was uncovered from the observed switch of the S = 3/2 spin state of the catalytic [4Fe-4S] cluster to a S = 1/2 spin state upon substrate addition. We show that a putative gene product from Pseudomonas putida KT2440 acts as a TudS desulfidase in vivo and conclude that TudS-like enzymes are widespread desulfidases involved in recycling and detoxifying tRNA-derived 4-thiouridine monophosphate nucleosides for RNA synthesis.


Subject(s)
RNA, Transfer , Thiouridine , Thiouridine/metabolism , RNA, Transfer/genetics , Bacteria/genetics , Catalysis , Sulfur/metabolism
4.
Angew Chem Int Ed Engl ; 60(1): 424-431, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32929873

ABSTRACT

We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Šresolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.

5.
Sci Rep ; 10(1): 788, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964920

ABSTRACT

Human activating signal cointegrator homology (ASCH) domain-containing proteins are widespread and diverse but, at present, the vast majority of those proteins have no function assigned to them. This study demonstrates that the 103-amino acid Escherichia coli protein YqfB, previously identified as hypothetical, is a unique ASCH domain-containing amidohydrolase responsible for the catabolism of N4-acetylcytidine (ac4C). YqfB has several interesting and unique features: i) it is the smallest monomeric amidohydrolase described to date, ii) it is active towards structurally different N4-acylated cytosines/cytidines, and iii) it has a high specificity for these substrates (kcat/Km up to 2.8 × 106 M-1 s-1). Moreover, our results suggest that YqfB contains a unique Thr-Lys-Glu catalytic triad, and Arg acting as an oxyanion hole. The mutant lacking the yqfB gene retains the ability to grow, albeit poorly, on N4-acetylcytosine as a source of uracil, suggesting that an alternative route for the utilization of this compound exists in E. coli. Overall, YqfB ability to hydrolyse various N4-acylated cytosines and cytidines not only sheds light on the long-standing mystery of how ac4C is catabolized in bacteria, but also expands our knowledge of the structural diversity within the active sites of amidohydrolases.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Cytosine/metabolism , Escherichia coli/enzymology , Acylation , Amidohydrolases/chemistry , Catalytic Domain , Crystallography, X-Ray , Cytosine/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Substrate Specificity
6.
Molecules ; 23(11)2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30405065

ABSTRACT

Ribose methylation is among the most ubiquitous modifications found in RNA. 2'-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2'-O-methylribonucleosides are promising starting materials for the production of nucleic acid-based drugs. Despite the countless possibilities of practical use for the metabolic enzymes associated with methylated nucleosides, there are very few reports regarding the metabolic fate and enzymes involved in the metabolism of 2'-O-alkyl nucleosides. The presented work focuses on the cellular degradation of 2'-O-methyluridine. A novel enzyme was found using a screening strategy that employs Escherichia coli uracil auxotroph and the metagenomic libraries. A 2'-O-methyluridine hydrolase (RK9NH) has been identified together with an aldolase (RK9DPA)-forming a part of a probable gene cluster that is involved in the degradation of 2'-O-methylated nucleosides. The RK9NH is functional in E. coli uracil auxotroph and in vitro. The RK9NH nucleoside hydrolase could be engineered to enzymatically produce 2'-O-methylated nucleosides that are of great demand as raw materials for production of nucleic acid-based drugs. Moreover, RK9NH nucleoside hydrolase converts 5-fluorouridine, 5-fluoro-2'-deoxyuridine and 5-fluoro-2'-O-methyluridine into 5-fluorouracil, which suggests it could be employed in cancer therapy.


Subject(s)
Hydrolases/genetics , Metagenomics , Uridine/analogs & derivatives , Amino Acid Sequence , Enzyme Activation , Escherichia coli/enzymology , Escherichia coli/genetics , Evolution, Molecular , Gene Library , Hydrolases/chemistry , Hydrolases/classification , Hydrolases/metabolism , Metagenome , Metagenomics/methods , Molecular Structure , Phylogeny , Spectrum Analysis , Substrate Specificity , Uridine/chemistry , Uridine/metabolism
7.
Front Microbiol ; 9: 2375, 2018.
Article in English | MEDLINE | ID: mdl-30349513

ABSTRACT

Cytosine is one of the four letters of a standard genetic code, found both in DNA and in RNA. This heterocyclic base can be converted into uracil upon the action of the well-known cytosine deaminase. Isocytosine (2-aminouracil) is an isomer of cytosine, yet the enzymes that could convert it into uracil were previously mainly overlooked. In order to search for the isocytosine deaminases we used a selection strategy that is based on uracil auxotrophy and the metagenomic libraries, which provide a random pool of genes from uncultivated soil bacteria. Several genes that encode isocytosine deaminases were found and two respective recombinant proteins were purified. It was established that both novel deaminases do not use cytosine as a substrate. Instead, these enzymes are able to convert not only isocytosine into uracil, but also 5-fluoroisocytosine into 5-fluorouracil. Our findings suggest that novel isocytosine deaminases have a potential to be efficiently used in targeted cancer therapy instead of the classical cytosine deaminases. Use of isocytosine instead of cytosine would produce fewer side effects since deaminases produced by the commensal E. coli gut flora are ten times less efficient in degrading isocytosine than cytosine. In addition, there are no known homologs of isocytosine deaminases in human cells that would induce the toxicity when 5-fluoroisocytosine would be used as a prodrug.

8.
R Soc Open Sci ; 5(5): 180008, 2018 May.
Article in English | MEDLINE | ID: mdl-29892439

ABSTRACT

Bioluminescence imaging experiments were carried out to characterize spatio-temporal patterns of bacterial self-organization in active suspensions (cultures) of bioluminescent Escherichia coli and its mutants. An analysis of the effects of mutations shows that spatio-temporal patterns formed in standard microtitre plates are not related to the chemotaxis system of bacteria. In fact, these patterns are strongly dependent on the properties of mutants that characterize them as self-phoretic (non-flagellar) swimmers. In particular, the observed patterns are essentially dependent on the efficiency of proton translocation across membranes and the smoothness of the cell surface. These characteristics can be associated, respectively, with the surface activity and the phoretic mobility of a colloidal swimmer. An analysis of the experimental data together with mathematical modelling of pattern formation suggests the following: (1) pattern-forming processes can be described by Keller-Segel-type models of chemotaxis with logistic cell kinetics; (2) active cells can be seen as biochemical oscillators that exhibit phoretic drift and alignment; and (3) the spatio-temporal patterns in a suspension of growing E. coli form due to phoretic interactions between oscillating cells of high metabolic activity.

9.
Environ Microbiol Rep ; 10(1): 49-56, 2018 02.
Article in English | MEDLINE | ID: mdl-29194984

ABSTRACT

Modified nucleotides are present in many RNA species in all Domains of Life. While the biosynthetic pathways of such nucleotides are well studied, much less is known about the degradation of RNAs and the return to the metabolism of modified nucleotides, their respective nucleosides or heterocyclic bases. Using an E. coli uracil auxotroph, we screened the metagenomic libraries for genes, which would allow the conversion of 2-thiouracil to uracil and thereby lead to the growth on a defined synthetic medium. We show that a gene encoding a protein consisting of previously uncharacterized Domain of Unknown Function 523 (DUF523) is responsible for such phenotype. We have purified this recombinant protein and demonstrated that it contains a FeS cluster. The substitution of cysteines, which have been predicted to form such clusters, with alanines abolished the growth phenotype. We conclude that DUF523 is involved in the conversion of 2-thiouracil into uracil in vivo.


Subject(s)
Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Thiouracil/metabolism , Uracil/metabolism , Amino Acid Substitution , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Library , Genes, Bacterial/genetics , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/isolation & purification , Holoenzymes/metabolism , Iron/metabolism , Models, Chemical , RNA/metabolism , Soil Microbiology , Sulfur/metabolism
10.
RNA ; 22(12): 1871-1883, 2016 12.
Article in English | MEDLINE | ID: mdl-27852927

ABSTRACT

Tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. We have suggested previously that a peculiar methyltransferase (aTrm5a/Taw22) likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G; and C7-methylation of imG-14 to yield imG2. Here we show that the recombinant aTrm5a/Taw22-like enzymes from both Pyrococcus abyssi and Nanoarchaeum equitans indeed possess such dual specificity. We also show that substitutions of individual conservative amino acids of P. abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37. We further demonstrate that aTrm5a-type enzyme SSO2439 from Sulfolobus solfataricus, which has no N1-methyltransferase activity, exhibits C7-methyltransferase activity, thereby producing imG2 from imG-14. We thus suggest renaming such aTrm5a methyltransferases as Taw21 to distinguish between monofunctional and bifunctional aTrm5a enzymes.


Subject(s)
Archaea/metabolism , Guanosine/analogs & derivatives , Methyltransferases/metabolism , RNA, Transfer, Phe/metabolism , Amino Acid Sequence , Guanosine/biosynthesis , Methyltransferases/chemistry , RNA, Transfer, Phe/chemistry , Sequence Homology, Amino Acid
11.
Microb Cell Fact ; 13: 22, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24512104

ABSTRACT

BACKGROUND: Human BiP is traditionally regarded as a major endoplasmic reticulum (ER) chaperone performing a number of well-described functions in the ER. In recent years it was well established that this molecule can also be located in other cell organelles and compartments, on the cell surface or be secreted. Also novel functions were assigned to this protein. Importantly, BiP protein appears to be involved in cancer and rheumatoid arthritis progression, autoimmune inflammation and tissue damage, and thus could potentially be used for therapeutic purposes. In addition, a growing body of evidence indicates BiP as a new therapeutic target for the treatment of neurodegenerative diseases. Increasing importance of this protein and its involvement in critical human diseases demands new source of high quality native recombinant human BiP for further studies and potential application. Here we introduce yeast Saccharomyces cerevisiae as a host for the generation of human BiP protein. RESULTS: Expression of a full-length human BiP precursor in S. cerevisiae resulted in a high-level secretion of mature recombinant protein into the culture medium. The newly discovered ability of the yeast cells to recognize, correctly process the native signal sequence of human BiP and secrete this protein into the growth media allowed simple one-step purification of highly pure recombinant BiP protein with yields reaching 10 mg/L. Data presented in this study shows that secreted recombinant human BiP possesses native amino acid sequence and structural integrity, is biologically active and without yeast-derived modifications. Strikingly, ATPase activity of yeast-derived human BiP protein exceeded the activity of E. coli-derived recombinant human BiP by a 3-fold. CONCLUSIONS: S. cerevisiae is able to correctly process and secrete human BiP protein. Consequently, resulting recombinant BiP protein corresponds accurately to native analogue. The ability to produce large quantities of native recombinant human BiP in yeast expression system should accelerate the analysis and application of this important protein.


Subject(s)
Endoplasmic Reticulum/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/chemistry , Humans , Molecular Sequence Data , Molecular Weight , Peptides/analysis , Peptides/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...