Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 184: 150-158, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736963

ABSTRACT

Gastrointestinal fluid volumes are a crucial parameter for dissolution and absorption of orally taken medications. Most often 240 mL are used in clinical standard setups. Nonetheless, surveys in patient populations revealed dramatically lower volumes for intake of oral medications in real life and even in some clinical studies reduced fluid volumes are common. These reductions might have serious impact on pharmacokinetics. Thus, it was the aim of this study to compare the gastric emptying of 240 mL and 20 mL of water in 8 healthy volunteers. For investigation of gastric fluid volumes Magnetic Resonance Imaging with strongly T2 weighted sequences was used. Gastric emptying was additionally quantified via caffeine pharmacokinetics measured in saliva. The absolute gastric volumes after intake of 240 mL or 20 mL obviously differed by factor 10 but relative gastric emptying expressed as fraction per time was nearly comparable. Only slighter slower emptying after intake of 20 mL was observed. Salivary caffeine pharmacokinetics representing mass transfer from stomach to small intestine after intake of different volumes did not differ. The absorbed caffeine fraction and emptied gastric volume fraction correlated well after intake of 240 mL, but not after intake of 20 mL, indicating a higher influence of secretion on gastric volume measurements after intake of smaller volumes. Relative gastric emptying as measured with MRI and salivary caffeine method was only slightly delayed, thus transfer of orally administered drug fraction could be comparable even with lower fluid intake as can be seen by comparable caffeine pharmacokinetics. Nonetheless, the considerably reduced volumes might interfere with dissolution and absorption.


Subject(s)
Caffeine , Gastric Emptying , Humans , Water , Stomach , Magnetic Resonance Imaging/methods
2.
J Sep Sci ; 44(19): 3700-3716, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34355502

ABSTRACT

Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2  = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.


Subject(s)
Caffeine/analysis , Chromatography, Supercritical Fluid/methods , Gastric Emptying/physiology , Mass Spectrometry/methods , Saliva/chemistry , Humans , Limit of Detection , Linear Models , Reproducibility of Results
3.
J Control Release ; 313: 24-32, 2019 11 10.
Article in English | MEDLINE | ID: mdl-31626859

ABSTRACT

The instability of various small molecules, vaccines and peptides in the human stomach is a complex challenge for oral drug delivery. Recently, a novel gastro-resistant capsule - the enTRinsic™ Drug Delivery Technology capsule - has been developed. In this work, the salivary tracer technique based on caffeine has been applied to study the in vivo disintegration of enTRinsic™ capsules in 16 healthy volunteers. In addition, magnetic resonance imaging (MRI) was used to visualize GI transit and to verify the disintegration times determined by using the salivary tracer technique. The enTRinsic™ capsules filled with 50mg of caffeine and 5mg of black iron oxide were administered in the fed state, i.e. 30min after a light meal (500kcal). In the first hour after capsule intake, the subjects were placed in supine position in the MRI scanner and scans were performed in short time intervals. After 1h, the subjects could leave the MRI scanner in between the MRI measurements, which were performed every 15min until disintegration of the capsule was confirmed (maximum observation time: 8h). Saliva samples were obtained simultaneously with MR imaging. Caffeine concentrations in saliva were determined by LC/MS-MS. The starting point of capsule disintegration was determined visually by inspection of the MR images as well as by the onset of salivary caffeine concentrations. In 14 out of 16 subjects, the capsule disintegrated in the small intestine. In one subject, the enTRinsic™ capsule was not emptied from the stomach within the observation time. In another subject, disintegration occurred during gastric emptying in the antropyloric region. In this study, we demonstrated that the enTRinsic™ capsules are also gastro resistant when taken under fed state conditions. Furthermore, we demonstrated the feasibility of using low dose caffeine as a salivary tracer for the determination of the disintegration of an enteric formulation.


Subject(s)
Caffeine/chemistry , Capsules/chemistry , Drug Carriers/chemistry , Ferrosoferric Oxide/chemistry , Magnetic Resonance Imaging/methods , Saliva/metabolism , Administration, Oral , Adolescent , Adult , Aged , Caffeine/administration & dosage , Caffeine/pharmacokinetics , Chemistry, Pharmaceutical , Cross-Over Studies , Drug Liberation , Female , Food , Gastrointestinal Transit/drug effects , Healthy Volunteers , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...