Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 123(3): 544-557, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28596269

ABSTRACT

It has been suggested that medications can increase heat stroke (HS) susceptibility/severity. We investigated whether the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) increases HS severity in a rodent model. Core temperature (Tc) of male, C57BL/6J mice (n = 45) was monitored continuously, and mice were given a dose of INDO [low dose (LO) 1 mg/kg or high dose (HI) 5 mg/kg in flavored treat] or vehicle (flavored treat) before heating. HS animals were heated to 42.4°C and euthanized at three time points for histological, molecular, and metabolic analysis: onset of HS [maximal core temperature (Tc,Max)], 3 h of recovery [minimal core temperature or hypothermia depth (HYPO)], and 24 h of recovery (24 h). Nonheated (control) animals underwent identical treatment in the absence of heat. INDO (LO or HI) had no effect on physiological indicators of performance (e.g., time to Tc,Max, thermal area, or cooling time) during heating or recovery. HI INDO resulted in 45% mortality rate by 24 h (HI INDO + HS group). The gut showed dramatic increases in gross morphological hemorrhage in HI INDO + HS in both survivors and nonsurvivors. HI INDO + HS survivors had significantly lower red blood cell counts and hematocrit suggesting significant hemorrhage. In the liver, HS induced cell death at HYPO and increased inflammation at Tc,Max, HYPO, and 24 h; however, there was additional effect with INDO + HS group. Furthermore, the metabolic profile of the liver was disturbed by heat, but there was no additive effect of INDO + HS. This suggests that there is an increase in morbidity risk with INDO + HS, likely resulting from significant gut injury.NEW & NOTEWORTHY This paper suggests that in a translational mouse model, NSAIDs may be counterindicated in situations that put an individual at risk of heat injury. We show here that a small, single dose of the NSAID indomethacin before heat stroke has a dramatic and highly damaging effect on the gut, which ultimately leads to increased systemic morbidity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Disease Models, Animal , Heat Stroke/physiopathology , Indomethacin/administration & dosage , Recovery of Function/physiology , Severity of Illness Index , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Body Temperature Regulation/physiology , Drug Administration Schedule , Heat Stroke/chemically induced , Heat Stroke/metabolism , Indomethacin/toxicity , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Recovery of Function/drug effects , Rodentia , Telemetry/trends
2.
Brain Res ; 1637: 81-90, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26876741

ABSTRACT

It has been suggested that heat-induced hypothalamic damage mediates core temperature (Tc) disturbances during heat stroke (HS) recovery; this is significant as hypothermia and/or fever have been linked to severity and overall pathological insult. However, to date there has been a lack of histological evidence in support of these claims. We hypothesized that local hypothalamic cytokines and/or chemokines, known regulators of Tc, are mediating the elevation in Tc during HS recovery even in the absence of histological damage. In experiment 1, the hypothalamus of Fischer 344 rats was examined for 84 cytokine/chemokine genes (real-time PCR) at multiple time points (Tc,Max, 1, 3, and 10 days) during mild HS recovery. In experiment 2, the hypothalamus of three different HS severities (MILD, moderate [MOD], and severe [SEV]) in rats were examined for the same genes as experiment 1 as well as six oxidative damage markers, at a single intermediate time point (1 day). Systemic cytokines were also analyzed in experiment 2 across the three severities. There were significant alterations in 25 cytokines/chemokines expression at Tc,Max, but little or no changes in expression at longer time points in experiment 1. In experiment 2 there were significant changes in gene expression in SEV rats only, with MILD and MOD rats showing baseline expression at 1 day, despite an absence of systemic cytokine expression in any severity. There was also no change in any oxidative marker of damage at 1 day, regardless of severity. In conclusion, we show only limited changes during long term recovery from HS, but demonstrate differences in hypothalamic gene expression patterns that may be driving HS pathology and morbidity. These findings contribute to our overall understanding of HS pathology in the CNS, as well as providing avenues for future pharmacological intervention.


Subject(s)
Heat Stroke/genetics , Hypothalamus/physiology , Inflammation/genetics , Animals , Body Temperature Regulation/genetics , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Fever/genetics , Fever/metabolism , Fever/pathology , Gene Expression Regulation , Heat Stroke/metabolism , Heat Stroke/pathology , Hypothalamus/metabolism , Hypothalamus/pathology , Hypothermia/genetics , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Rats , Rats, Inbred F344
3.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1264-72, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26290107

ABSTRACT

Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.


Subject(s)
Heat Stroke/metabolism , Point-of-Care Systems , Troponin/metabolism , Animals , Blood Urea Nitrogen , Heat Stroke/blood , Heat Stroke/diagnosis , Male , Rats , Rats, Inbred F344 , Time Factors , Troponin/genetics
4.
Am J Physiol Heart Circ Physiol ; 309(4): H557-64, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26071550

ABSTRACT

The influences of severe heat stroke (HS) on cardiovascular function during recovery are incompletely understood. We hypothesized that HS would elicit a heart rate (HR) increase persisting through 24 h of recovery due to hemodynamic, thermoregulatory, and inflammatory events, necessitating tachycardia to support mean arterial pressure (MAP). Core temperature (Tc), HR, and MAP were measured via radiotelemetry in conscious male Fischer 344 rats (n = 22; 282.4 ± 3.5 g) during exposure to 37°C ambient temperature until a maximum Tc of 42.0°C, and during recovery at 20°C ambient temperature through 24 h. Rats were divided into Mild, Moderate, and Severe groups based on pathophysiology. HS rats exhibited hysteresis relative to Tc with HR higher for a given Tc during recovery compared with heating (P < 0.0001). "Reverse" hysteresis occurred in MAP with pressure during cooling lower than heating per degree Tc (P < 0.0001). Mild HS rats showed tachycardia [P < 0.01 vs. control (Con)] through 8 h of recovery, elevated MAP (P < 0.05 vs. Con) for the initial 5 h of recovery, with sustained hyperthermia (P < 0.05 vs. Con) through 24 h. Moderate HS rats showed significant tachycardia (P < 0.01 vs. Con), normal MAP (P > 0.05 vs. Con), and rebound hyperthermia from 4 to 24 h post-HS (P < 0.05 vs. Con). Severe HS rats showed tachycardia (P < 0.05 vs. Con), hypotension (P < 0.01 vs. Con), and hypothermia for 24 h (P < 0.05 vs. Con). Severe HS rats showed 14- and 12-fold increase in heart and liver inducible nitric oxide synthase expression, respectively. Hypotension and hypothermia in Severe HS rats was consistent with inducible nitric oxide synthase-mediated systemic vasodilation. These findings provide mechanistic insight into hemodynamic and thermoregulatory impairments during 24 h of HS recovery.


Subject(s)
Blood Pressure , Body Temperature Regulation , Heart Rate , Heat Stroke/physiopathology , Heat-Shock Response , Animals , Male , Rats , Rats, Inbred F344 , Vasodilation
5.
J Appl Physiol (1985) ; 117(9): 971-8, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25123200

ABSTRACT

Multiorgan failure is a catastrophic consequence of heat stroke (HS) and considered the underlying etiology of mortality. Identifying novel biomarkers capable of predicting the extent of HS-induced organ damage will enhance point-of-care triage and treatment. Conscious male F344 rats (n = 32) were radiotelemetered for continuous core temperature (Tc), heart rate, and arterial pressure measurement. Twenty-two animals were exposed to ambient temperature of 37°C to a maximum Tc of 41.9 ± 0.1°C. Rats were euthanized at 24 h of recovery for analysis of plasma biomarkers [cardiac troponin I (cTnI), blood urea nitrogen (BUN), alanine aminotransferase (ALT), albumin, glucose] and histology. Tc profiles observed during recovery stratified HS severity into Mild, Moderate, and Severe. Eleven (50%) animals exhibited an acute compensatory hemodynamic response to heat exposure and a monophasic Tc profile consisting of sustained hyperthermia (∼1°C). Five (23%) rats displayed hemodynamic challenge and a biphasic Tc profile with rapid return to baseline followed by rebound hyperthermia. All biomarkers were significantly altered from control values (P < 0.05). Four (18%) animals exhibited significant hemodynamic compromise during heat and a triphasic profile characterized by rapid cooling to baseline Tc, rebound hyperthermia, and subsequent hypothermia (∼35°C) through 24 h. cTnI showed a 40-fold increase over CON (P < 0.001) and correlated with BUN (r = 0.912) consistent with cardiorenal failure. Hypoglycemia correlated with ALT (r = 0.824) suggestive of liver dysfunction. Histology demonstrated myocardial infarction, renal tubular necrosis, and acute liver necrosis. Two (9%) animals succumbed during HS recovery. This study identified novel biomarkers that predict HS severity and organ damage during acute recovery that could provide clinical significance for identifying key biomarkers of HS pathogenesis.


Subject(s)
Arterial Pressure/physiology , Body Temperature/physiology , Cardiovascular System/physiopathology , Heart Rate/physiology , Heat Stroke/diagnosis , Animals , Biomarkers , Heat Stroke/physiopathology , Male , Rats , Rats, Inbred F344 , Severity of Illness Index , Telemetry
6.
J Physiol ; 592(15): 3325-38, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24951625

ABSTRACT

Temporal expression of positive and negative angiogenic factors in response to detraining is poorly understood. We report the protein expression of anti-angiogenic peptides (thrombospondin-1, TSP-1; and endostatin) as well as pro-angiogenic factors (vascular endothelial growth factor, VEGF; matrix metalloproteinases-2 and -9), and nucleolin (a nuclear protein involved with synthesis and maturation of ribosomes) in response to detraining in triceps surae muscles of C57BL/6 mice. Male mice were allowed to exercise voluntarily for 21 days, and then basal and acute response to exercise were evaluated at 1, 7, 14 and 28 days detraining (D1, D7, D14, D28, respectively, n = 12/group). As seen in the D1 mice, training resulted in the increased muscle capillary-to-fibre ratio (C/F), increased maximal running time and elevated basal expression of VEGF and matrix metalloproteinase-9 (P < 0.05). After 7 days of detraining (D7), C/F levels were similar to control levels, but both basal VEGF and TSP-1 were elevated (P < 0.05). At D14 and D28, TSP-1 protein was not different compared to baseline levels; however, VEGF was elevated in gastrocnemius (GA), but not the soleus (SOL) or plantaris (PLT) muscles, of D14 mice. Endostatin tended to decrease in D14 and D28 compared to controls. Timing of nucleolin protein expression differed between muscle groups, with increases at D1, D7 and D14 in the PLT, SOL and GA muscles, respectively. The response of VEGF and nucleolin to acute exercise was blunted with training, and remained blunted in the PLT and SOL even after 28 days of detraining, at a time point long after muscle capillarization was observed to be similar to pre-training levels. These data suggest that TSP-1 may be a mediator of capillary regression with detraining, even in the face of elevated VEGF, suggesting that pro-angiogenic regulators may not be able to prevent the regression of skeletal muscle capillaries under physiological conditions. The responses of matrix metalloproteinases, endostatin and nucleolin poorly correlated with detraining-induced capillary regression.


Subject(s)
Endostatins/metabolism , Muscle, Skeletal/metabolism , Neovascularization, Physiologic , Physical Exertion , Vascular Endothelial Growth Factor A/metabolism , Animals , Endostatins/genetics , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Organ Specificity , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Vascular Endothelial Growth Factor A/genetics , Nucleolin
7.
J Physiol ; 591(20): 5157-69, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23878369

ABSTRACT

Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2-4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12-24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180-258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise.


Subject(s)
Endostatins/metabolism , Matrix Metalloproteinase 2/metabolism , Muscle, Skeletal/metabolism , Physical Exertion , Vascular Endothelial Growth Factor A/metabolism , Animals , Endostatins/genetics , Male , Matrix Metalloproteinase 2/genetics , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Neovascularization, Physiologic , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Time Factors , Vascular Endothelial Growth Factor A/genetics , Nucleolin
8.
PLoS One ; 8(2): e55953, 2013.
Article in English | MEDLINE | ID: mdl-23405239

ABSTRACT

Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.


Subject(s)
Biomimetic Materials/administration & dosage , Capillary Action/drug effects , Drug Delivery Systems , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/drug effects , Oligopeptides/administration & dosage , Thrombospondin 1/metabolism , Animals , Apoptosis , CD36 Antigens/metabolism , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Oligopeptides/pharmacology , Physical Conditioning, Animal , Running , Vascular Endothelial Growth Factor A/metabolism
9.
Exp Physiol ; 96(11): 1138-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21804139

ABSTRACT

Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P < 0.05). In Non-MM mice, only muscle capillarity in PLT was greater than in control mice (P < 0.001). The soleus (SOL) showed no statistical differences in muscle capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P < 0.05), with no statistical difference in basal TSP-1 when compared with control mice. In the PLT, MM mice had a 79% increase in basal VEGF (P < 0.05) and a 39% lower basal TSP-1 (P < 0.05) compared with the control animals. Non-MM mice showed no difference in basal VEGF in either the GA or the PLT compared with control mice. In contrast, basal TSP-1 was elevated in the PLT, but not in the GA, of Non-MM mice compared with control mice. Neither VEGF nor TSP-1 was significantly different in SOL muscle among the three mouse lines. In response to acute exercise, MM mice displayed a 41 and 28% increase (P < 0.05) in VEGF in the GA and PLT, respectively, whereas neither control nor Non-MM mice showed a significant VEGF response to acute exercise. In contrast, TSP-1 levels were decreased by 90% in GA (P < 0.05) but increased by 50% in PLT (P < 0.05) in response to acute exercise in MM mice. The SOL showed no response to exercise for either VEGF or TSP-1 for any of the mouse lines. These data, with the exception of the Non-MM plantaris muscle, suggest that elevated capillarity is associated with altered balance between positive and negative angiogenic regulators (i.e. VEGF versus TSP-1, respectively). Based on the greater capillarity and significant VEGF response to exercise in MM mice, these data suggest that VEGF expression may, at least in part, be genetically determined.


Subject(s)
Capillaries/anatomy & histology , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/physiology , Thrombospondin 1/biosynthesis , Vascular Endothelial Growth Factor A/biosynthesis , Aerobiosis , Animals , Exercise Tolerance , Hindlimb/anatomy & histology , Hindlimb/blood supply , Male , Mice , Mice, Inbred Strains , Muscle Fibers, Skeletal/cytology , Physical Endurance/physiology , Physical Exertion , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...