Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(4): eaay5174, 2020 01.
Article in English | MEDLINE | ID: mdl-32010787

ABSTRACT

Fault slip behavior during episodic tremor and slow slip (ETS) events, which occur at the deep extension of subduction zone megathrust faults, is believed to be related to cyclic fluid processes that necessitate fluctuations in pore-fluid pressures. In most subduction zones, a layer of anomalously low seismic wave velocities [low-velocity layer (LVL)] is observed in the vicinity of ETS and suggests high pore-fluid pressures that weaken the megathrust. Using repeated seismic scattering observations in the Cascadia subduction zone, we observe a change in the seismic velocity associated with the LVL after ETS events, which we interpret as a response to fluctuations in pore-fluid pressure. These results provide direct evidence of megathrust fault-valve processes during ETS.

2.
Infect Genet Evol ; 73: 295-305, 2019 09.
Article in English | MEDLINE | ID: mdl-31039449

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has a major economic impact on the swine industry. The important genetic diversity needs to be considered for disease management. In this regard, information on the circulating endemic strains and their dispersal patterns through ongoing surveillance is beneficial. The objective of this project was to classify Quebec PRRSV ORF5 sequences in genetic clusters and evaluate stability of clustering results over a three-year period using an in-house automated clustering system. Phylogeny based on maximum likelihood (ML) was first inferred on 3661 sequences collected in 1998-2013 (Run 1). Then, sequences collected between January 2014 and September 2016 were sequentially added into 11 consecutive runs, each one covering a three-month period. For each run, detection of clusters, which were defined as groups of ≥15 sequences having a≥70% rapid bootstrap support (RBS) value, was automated in Python. Cluster stability was described for each cluster and run based on the number of sequences, RBS value, maximum pairwise distance and agreement in sequence assignment to a specific cluster. First and last run identified 29 and 33 clusters, respectively. In the last run, about 77% of the sequences were classified by the system. Most clusters were stable through time, with sequences attributed to one cluster in Run 1 staying in the same cluster for the 11 remaining runs. However, some initial groups were further subdivided into subgroups with time, which is important for monitoring since one specific wild-type cluster increased from 0% in 2007 to 45% of all sequences in 2016. This automated classification system will be integrated into ongoing surveillance activities, to facilitate communication and decision-making for stakeholders of the swine industry.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Cluster Analysis , Genetic Variation/genetics , Open Reading Frames/genetics , Phylogeny , RNA, Viral/genetics , Swine , Viral Proteins/genetics
3.
BMC Vet Res ; 15(1): 135, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068211

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a major threat to the swine industry. It is caused by the PRRS virus (PRRSV). Determination and comparison of the nucleotide sequences of PRRSV strains provides useful information in support of control initiatives or epidemiological studies on transmission patterns. The alignment of sequences is the first step in analyzing sequence data, with multiple algorithms being available, but little is known on the impact of this methodological choice. Here, a study was conducted to evaluate the impact of different alignment algorithms on the resulting aligned sequence dataset and on practical issues when applied to a large field database of PRRSV open reading frame (ORF) 5 sequences collected in Quebec, Canada, from 2010 to 2014. Five multiple sequence alignment programs were compared: Clustal W, Clustal Omega, Muscle, T-Coffee and MAFFT. RESULTS: The resulting alignments showed very similar results in terms of average pairwise genetic similarity, proportion of pairwise comparisons having ≥97.5% genetic similarity and sum of pairs (SP) score, except for T-Coffee where increased length of aligned datasets as well as limitation to handle large datasets were observed. CONCLUSIONS: Based on efficiency at minimizing the number of gaps in different dataset sizes with default open gap values as well as the capability to handle a large number of sequences in a timely manner, the use of Clustal Omega might be recommended for the management of PRRSV extensive database for both research and surveillance purposes.


Subject(s)
Algorithms , Genetic Variation , Porcine respiratory and reproductive syndrome virus/genetics , Sequence Alignment/methods , Sequence Alignment/standards
4.
Nat Commun ; 10(1): 2249, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113959

ABSTRACT

The origin of the North American Cordillera and its affinity with the bounding craton are subjects of contentious debate. The mechanisms of orogenesis are rooted in two competing hypotheses known as the accretionary and collisional models. The former model attributes the Cordillera to an archetypal accretionary orogen comprising a collage of exotic terranes. The latter, less popular view argues that the Cordillera is a collisional product between an allochthonous ribbon microcontinent and cratonic North America. Here we present new seismic evidence of a sharp and structurally complex Cordillera-craton boundary in the uppermost mantle beneath the southern Canadian Cordillera, which can be interpreted as either a reshaped craton margin or a Late Cretaceous collisional boundary based on the respective hypotheses. This boundary dips steeply westward underneath a proposed (cryptic) suture in the foreland, consisent with the predicted location and geometry of the mantle suture, thus favoring a collisional origin.

5.
Porcine Health Manag ; 5: 10, 2019.
Article in English | MEDLINE | ID: mdl-30976454

ABSTRACT

BACKGROUND: Control of porcine reproductive and respiratory syndrome (PRRS) represents a tremendous challenge. The trend is now toward managing the disease collectively. In Quebec, area and regional control and elimination (ARC&E) initiatives started in 2011; diagnostic testing, including ORF5 sequencing, and sharing of information among stakeholders are largely promoted. At the provincial level, a data-sharing agreement was signed by Quebec swine practitioners allowing PRRS virus (PRRSV) sequences to be transferred to a database maintained by the Laboratoire d'épidémiologie et de médecine porcine (LEMP-DB). Several interactive tools were developed and are available to veterinarians to allow comparison of PRRSV ORF5 sequences within ARC&E projects or provincially while managing confidentiality issues. RESULTS: Between January 1st 2010 and December 31st 2018, 4346 PRRSV ORF5 sequences were gathered into the LEMP-DB, involving 1254 sites and 43 practicing veterinarians. Approximately 34% of the submissions were from ARC&E projects. Using a novel web-based sequence comparison tool, each veterinarian has access to information on his/her client sequences and can compare each sequence with 1) commercial vaccine strains, 2) historical samples from the same site, and 3) all sequences submitted to the database over the last 4 years. Newly introduced PRRSV into breeding herds can be monitored using a new sequence comparison tool based on comparison of sequences at the provincial level. Each month, graphs providing the number of introductions per month and the yearly cumulative are updated. Between August 1st 2014 and December 31st 2018, 233 introductions were detected on 180 different breeding sites. Following a data-sharing agreement, veterinarians involved in ARC&E projects have access to an interactive mapping tool to locate pig sites, compare sequence similarity between participating sites and visualize the results on the map. CONCLUSIONS: The structure developed in Quebec to collect, analyse and share sequencing data was efficient to provide useful information to the swine industry at both provincial and regional levels while dealing with confidentiality issues.

6.
Sci Adv ; 4(3): eaar2982, 2018 03.
Article in English | MEDLINE | ID: mdl-29536046

ABSTRACT

At subduction zones, the deep seismogenic transition from a frictionally locked to steady sliding interface is thought to primarily reflect changes in rheology and fluid pressure and is generally located offshore. The development of fluid pressures within a seismic low-velocity layer (LVL) remains poorly constrained due to the scarcity of dense, continuous onshore-offshore broadband seismic arrays. We image the subducting Juan de Fuca oceanic plate in northern Cascadia using onshore-offshore teleseismic data and find that the signature of the LVL does not extend into the locked zone. Thickening of the LVL down dip where viscous creep dominates suggests that it represents the development of an increasingly thick and fluid-rich shear zone, enabled by fluid production in subducting oceanic crust. Further down dip, episodic tremor, and slip events occur in a region inferred to have locally increased fluid pressures, in agreement with electrical resistivity structure and numerical models of fault slip.

7.
Nature ; 510(7505): 389-92, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24943955

ABSTRACT

Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years. In Cascadia, slow slip is segmented along strike and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface. Observations and models of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature, and deposition prevails near the base of the forearc crust. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution-precipitation creep can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also agree with numerical models of slip stabilization under fault zone dilatancy strengthening caused by decreasing fluid pressure as pore space increases. This implies that temperature-dependent silica deposition, permeability reduction and fluid overpressure development control dilatancy and slow-earthquake behaviour.

8.
Nature ; 509(7501): 483-6, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24828048

ABSTRACT

Groundwater use in California's San Joaquin Valley exceeds replenishment of the aquifer, leading to substantial diminution of this resource and rapid subsidence of the valley floor. The volume of groundwater lost over the past century and a half also represents a substantial reduction in mass and a large-scale unburdening of the lithosphere, with significant but unexplored potential impacts on crustal deformation and seismicity. Here we use vertical global positioning system measurements to show that a broad zone of rock uplift of up to 1-3 mm per year surrounds the southern San Joaquin Valley. The observed uplift matches well with predicted flexure from a simple elastic model of current rates of water-storage loss, most of which is caused by groundwater depletion. The height of the adjacent central Coast Ranges and the Sierra Nevada is strongly seasonal and peaks during the dry late summer and autumn, out of phase with uplift of the valley floor during wetter months. Our results suggest that long-term and late-summer flexural uplift of the Coast Ranges reduce the effective normal stress resolved on the San Andreas Fault. This process brings the fault closer to failure, thereby providing a viable mechanism for observed seasonality in microseismicity at Parkfield and potentially affecting long-term seismicity rates for fault systems adjacent to the valley. We also infer that the observed contemporary uplift of the southern Sierra Nevada previously attributed to tectonic or mantle-derived forces is partly a consequence of human-caused groundwater depletion.


Subject(s)
Altitude , Earthquakes/statistics & numerical data , Groundwater/analysis , Models, Theoretical , Water Supply/statistics & numerical data , California , Elasticity , Environmental Monitoring , Geographic Information Systems , Seasons , Water Supply/analysis
9.
Nature ; 471(7338): 312-3, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21412329
10.
Nature ; 457(7225): 76-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19122639

ABSTRACT

Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson's ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson's ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip.

SELECTION OF CITATIONS
SEARCH DETAIL
...