Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 193: 71-83, 2018 10.
Article in English | MEDLINE | ID: mdl-29957329

ABSTRACT

In microelectronics, recently developed 3D integration offers the possibility to stack the dice or wafers vertically instead of putting their different parts next to one another, in order to save space. As this method becomes of greater interest, the need for 3D imaging techniques becomes higher. We here report a study about different 3D characterization techniques applied to copper pillars, which are used to stack different dice together. Destructive techniques such as FIB/SEM, FIB/FIB, and PFIB/PFIB slice and view protocols have been assessed, as well as non-destructive ones, such as laboratory-based and synchrotron-based computed tomographies. A comparison of those techniques in the specific case of copper pillars is given, taking into account the constraints linked to the microelectronics industry, mainly concerning resolution and sample throughput. Laboratory-based imaging techniques are shown to be relevant in the case of punctual analyses, while synchrotron based tomographies offer highly resolved volumes for larger batches of samples.

2.
J Microsc ; 264(2): 247-251, 2016 11.
Article in English | MEDLINE | ID: mdl-27513607

ABSTRACT

This paper shows how X-ray computed nanotomography (CNT) can be correlated with focused ion beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) tomography on the same sample to investigate both the morphological and elemental structure. This methodology is applicable to relatively large specimens with dimensions of several tens of microns whilst maintaining a high spatial resolution of the order of 100 nm. However, combining X-ray CNT and FIB-TOF-SIMS tomography requires innovative sample preparation protocols to allow both experiments to be conducted on exactly the same sample without chemically or structurally modifying the sample between measurements. Moreover, dedicated algorithms have been developed for effective data fusion that is biased with nine degrees of freedom. This methodology has been tested using a porous and heterogeneous solid oxide fuel cell (SOFC) that has features varying in size by three orders of magnitude - from hundreds of nanometre large pores and grains to tens of micron wide functional layers.

3.
J Microsc ; 256(2): 90-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25131954

ABSTRACT

Total variation minimization is applied to the particular case of X-ray tomography in a scanning electron microscope. To prove the efficiency of this reconstruction method, noise-free and noisy data based on the Shepp & Logan phantom have been simulated. These simulations confirm that Total variation minimization-reconstruction algorithm better manages data containing low number of projections with respect to simultaneous iterative reconstruction technique or filtered backprojection, even in the presence of noise. The algorithm has been applied to real data sets, with a low angular sampling and a high level of noise. Two samples containing micro-interconnections have been analyzed and 3D reconstructions show that Total variation minimization-based algorithm performs well even with 60 projections in order to properly recover a 500 nm diameter void inside a copper interconnection.

4.
Micron ; 58: 1-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24316374

ABSTRACT

The potential of X-ray nanotomography hosted in a SEM in presented in this paper. In order to improve the detail detectability of this system, which is directly related to the X-ray source size, thin metal layers have been studied and installed in the equipment. A 3D resolution pattern has been created in order to determine the smallest detectable features by this setup. This sample is a 25 µm diameter copper pillar in which size-controlled holes have been milled using a plasma-focused ion beam. This pattern has then been scanned and the resulting 3D reconstruction demonstrates that the instrument is able to detect 500 nm diameter voids in a copper interconnection, as used in 3D integration.

5.
Ultramicroscopy ; 136: 185-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24189616

ABSTRACT

The structural and chemical properties of advanced nano-devices with a three-dimensional (3D) architecture have been studied at the nanometre scale. An original method has been used to characterize gate-all-around and tri-gate silicon nanowire transistor by combining electron tomography and atom probe tomography (APT). Results show that electron tomography is a well suited method to determine the morphological structure and the dimension variations of devices provided that the atomic number contrast is sufficient but without an absolute chemical identification. APT can map the 3D chemical distribution of the atoms in devices but suffers from strong distortions in the dimensions of the reconstructed volume. These may be corrected using a simple method based on atomic density correction and electron tomography data. Moreover, this combination is particularly useful in helping to understand the evaporation mechanisms and improve APT reconstructions. This paper demonstrated that a full 3D characterization of nano-devices requires the combination of both tomography techniques.

6.
Microsc Microanal ; 19(3): 726-39, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23575375

ABSTRACT

Tomography is a standard and invaluable technique that covers a large range of length scales. It gives access to the inner morphology of specimens and to the three-dimensional (3D) distribution of physical quantities such as elemental composition, crystalline phases, oxidation state, or strain. These data are necessary to determine the effective properties of investigated heterogeneous media. However, each tomographic technique relies on severe sampling conditions and physical principles that require the sample to be adequately shaped. For that purpose, a wide range of sample preparation techniques is used, including mechanical machining, polishing, sawing, ion milling, or chemical techniques. Here, we focus on the basics of tomography that justify such advanced sample preparation, before reviewing and illustrating the main techniques. Performances and limits are highlighted, and we identify the best preparation technique for a particular tomographic scale and application. The targeted tomography techniques include hard X-ray micro- and nanotomography, electron nanotomography, and atom probe tomography. The article mainly focuses on hard condensed matter, including porous materials, alloys, and microelectronics applications, but also includes, to a lesser extent, biological considerations.

7.
Nanotechnology ; 24(8): 085706, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23386039

ABSTRACT

Structural, chemical and electronic properties of electroforming in the TiN/HfO(2) system are investigated at the nanometre scale. Reversible resistive switching is achieved by biasing the metal oxide using conductive atomic force microscopy. An original method is implemented to localize and investigate the conductive region by combining focused ion beam, scanning spreading resistance microscopy and scanning transmission electron microscopy. Results clearly show the presence of a conductive filament extending over 20 nm. Its size and shape is mainly tuned by the corresponding HfO(2) crystalline grain. Oxygen vacancies together with localized states in the HfO(2) band gap are highlighted by electron energy loss spectroscopy. Oxygen depletion is seen mainly in the central part of the conductive filament along grain boundaries. This is associated with partial amorphization, in particular at both electrode/oxide interfaces. Our results are a direct confirmation of the filamentary conduction mechanism, showing that oxygen content modulation at the nanometre scale plays a major role in resistive switching.

SELECTION OF CITATIONS
SEARCH DETAIL
...