Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 173: 110373, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091836

ABSTRACT

Despite being one of the first enzymes discovered in 1883, the determination of laccase activity remains a scientific challenge, and a barrier to the full use of laccase as a biocatalyst. Indeed, laccase, an oxidase of the blue multi-copper oxidases family, has a wide range of substrates including substituted phenols, aromatic amines and lignin-related compounds. Its one-electron mechanism requires only oxygen and releases water as a reaction product. These characteristics make laccase a biocatalyst of interest in many fields of applications including pulp and paper industry, biorefineries, food, textile, and pharmaceutical industries. But to fully envisage the use of laccase at an industrial scale, its activity must be reliably quantifiable on complex substrates and in complex matrices. This review aims to describe current and emerging methods for laccase activity assays and place them in the context of a potential industrial use of the enzyme.


Subject(s)
Laccase , Lignin , Laccase/chemistry , Lignin/chemistry
2.
Bioengineered ; 14(1): 228-244, 2023 12.
Article in English | MEDLINE | ID: mdl-37455672

ABSTRACT

Taken separately, a single sweet sorghum stem bioconversion process for bioethanol and biomethane production only leads to a partial conversion of organic matter. The direct fermentation of crushed whole stem coupled with the methanization of the subsequent solid residues in a two-stage process was experimented to improve energy bioconversion yield, efficiency, and profitability. The raw stalk calorific value was 17,144.17 kJ/kg DM. Fermentation step performed using Saccharomyces cerevisiae resulted in a bioconversion yield of 261.18 g Eth/kg DM, i.e. an energy recovery efficiency of 6921.27 kJ/kg DM. The methanogenic potentials were 279 and 256 LCH4/kg DM, respectively, for raw stem and fermentation residues, i.e. energy yields of 10,013.31 and 9187.84 kJ/kg DM, respectively. Coupling processes have significantly increased yield and made it possible to reach 13,309.57 kJ/kg DM, i.e. 77.63% of raw stem energy recovery yield, compared to 40.37% and 58.40%, respectively, for single fermentation and methanization processes.


Sweet sorghum stem is a viable feedstock source for efficient coproduction of ethanol and methaneSorghum stems calorific value determination revealed an energy potential of 17.15 MJ/kg DMEnergy recovery by single methanization yielded 18.03% more than ethanol fermentationCoupling processes has significantly increased energy recovery yield and profitability.


Subject(s)
Sorghum , Fermentation , Sorghum/chemistry , Ethanol , Methane , Saccharomyces cerevisiae
3.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375426

ABSTRACT

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Subject(s)
Laccase , Polyporaceae , Laccase/chemistry , Lignin/chemistry
4.
Foods ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454725

ABSTRACT

Preventing animal-source food waste is an important pathway to reducing malnutrition and improving food system sustainability. Uncontrolled color variation due to oxidation is a source of waste as it prompts food rejection by consumers. Evaluation of oxidation-reduction potential (ORP) can help to predict and prevent oxidation and undesirable color changes. A new sensor and two modeling approaches-a phenomenological model and a reaction-diffusion model-were successfully used to predict the oxidative browning of beef ribeye steaks stored under different temperature and oxygen concentration conditions. Both models predicted similar storage durations for acceptable color, although deviating for higher and lower redness levels, which are of no interest for meat acceptance. Simulations under higher oxygen concentrations lead to a few days of delay in the redness change, as observed in practice, under modified atmosphere packaging. In meat juice, variation in ORP measured by the sensor correlated with the redness variation. However, in meat, sensors promote oxidation in the adjacent area, which is unacceptable for industrial use. This paper discusses the potential, limits, and prospects of the mathematical models and sensors, developed for beef. A strategy is proposed to couple these approaches and include the effect of microorganisms.

5.
Water Environ Res ; 93(3): 464-478, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32871040

ABSTRACT

The use of waste and by-products locally available in large quantities and at low cost as adsorbents can be considered an appropriate approach for improving waste management and protecting the environment. Cotton textile waste was used to prepare adsorbents (MC) via pyrolysis followed by a chemical modification with H3 PO4 . MC samples were characterized by scanning electron microscopy, FTIR spectroscopy, and N2 adsorption-desorption isotherm. The results revealed that MC treated with 1 M H3 PO4 (MC1 ) showed an excellent adsorption performance. The single and binary adsorption of tetracycline (TC) and paracetamol (Pa) onto MC1 were studied. In a single system, TC was better adsorbed than Pa and maximum adsorption capacities qm are 87.7 mg/g and 62 mg/g, respectively. The adsorption follows the Langmuir and pseudo-second-order kinetic models. For a binary system, the experimental data indicate that Pa (44.04 mg/g) is better adsorbed than TC (24.13 mg/g). Adsorption equilibrium data of TC and Pa evaluated by the selectivity extended-Langmuir model in which selectivity factor was introduced provided good correlation results with the binary adsorption data. Cotton textile waste is potentially promising for the preparation of effective adsorbents for the removal of pharmaceutical residues in aqueous solutions. PRACTITIONER POINTS: Valorization of cotton textile waste into adsorbents. Adsorbents were prepared by pyrolysis at 600°C followed by chemical modification in the presence of H3 PO4 . Removal of tetracycline (TC) and paracetamol (Pa) alone or in mixtures by adsorption. Adsorbent showed high-capacity adsorption of the TC and Pa even in a mixture from solutions at low concentrations. The Langmuir and selectivity extended-Langmuir models describe the adsorption of TC and Pa alone and in mixtures, respectively.


Subject(s)
Acetaminophen , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Oxidants , Solutions , Textiles
6.
Langmuir ; 29(36): 11431-9, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23947652

ABSTRACT

The catalytic activity of porous platinum nanostructures, viz. platinum nanonets (PtNNs) and platinum nanoballs (PtNBs), synthesized by radiolysis were studied using two model reactions (i) electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate and (ii) the reduction of p-nitrophenol by sodium borohydride to p-aminophenol. The kinetic investigations were carried out for the platinum nanostructure-catalyzed reactions at different temperatures. The pseudofirst-order rate constant for the electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate catalyzed by PtNNs and PtNBs at 293 K are (9.1 ± 0.7) × 10(-3) min(-1) and (16.9 ± 0.6) × 10(-3) min(-1), respectively. For the PtNN- and PtNB-catalyzed reduction of p-nitrophenol to p-aminophenol by sodium borohydride, the pseudofirst-order rate constant was (8.4 ± 0.3) × 10(-2) min(-1) and (12.6 ± 2.5) × 10(-2) min(-1), respectively. The accessible surface area of the PtNNs and PtNBs determined before the reaction are 99 and 110 m(2)/g, respectively. These nanostructures exhibit significantly higher catalytic activity, consistent with the largest accessible surface area reported so far for the solid platinum nanoparticles. The equilibrium of the reactants on the surface of the platinum nanostructures played an important role in the induction time (t0) observed in the reaction. A possible role of structural modifications of PtNBs catalyzed the reaction leading to change in the accessible surface area of PtNBs is being explored to explain the nonlinear behavior in the kinetic curve. The activation energy of the PtNN- and PtNB-catalyzed reduction of p-nitrophenol are 26 and 6.4 kJ/mol, respectively. These observations open up new challenges in the field of material science to design and synthesize platinum nanostructures which could withstand such reaction conditions.

7.
Phys Chem Chem Phys ; 13(9): 3748-57, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21173972

ABSTRACT

Molecular simulations are used to study the adsorption, structure, and dynamics of benzene at 298 K in atomistic models of ordered and disordered nanoporous carbons. The ordered porous carbon is a regular slit pore made up of graphene sheets. The disordered porous carbon is a structural model that reproduces the morphological (pore shape) and topological (pore connectivity) disorder of saccharose-based porous carbons. As expected for pores of a regular geometry, the filling occurs at well-defined pressures which are an increasing function of the pore width H. In contrast, in qualitative agreement with experimental data for activated carbon fibers, the filling of the disordered carbon is continuous and spans over a large pressure range. The structure and dynamics of benzene in the disordered carbon also strongly depart from that for the slit pore geometry. While benzene in the slit graphite nanopores exhibits significant layering, benzene in the disordered porous carbon exhibits a liquid-like structure very close to its bulk counterpart. Both the ordering and self-diffusivity of benzene in the graphite nanopores depend in a complex manner on the pore width. The dynamics is either slower or faster than its bulk counterpart; our data show that the self-diffusivity decreases as the number of confined layers n divided by the pore width H increases (except for very small pore sizes for which benzene crystallizes and is necessarily slower than the liquid phase). The dynamics of benzene in the disordered porous carbon is isotropic and is much slower than that for the graphite slit nanopores (even with the smallest slit nanopore considered in this work). The results above show that the adsorption, structure, and dynamics of benzene confined in disordered porous carbons cannot be described in simple terms using an ideal model such as the slit pore geometry.

8.
Phys Chem Chem Phys ; 12(7): 1440-3, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20126756

ABSTRACT

We studied liquid water confined within nanopores which present a high level of hydrophobicity thanks to a new method of synthesis. We found that the liquid state persists down to temperatures much lower than in the bulk and in hydrophilic materials of comparable sizes, allowing us to define a thermodynamic limit for the melting/crystallization of water.


Subject(s)
Water/chemistry , Freezing , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Porosity , Thermodynamics
9.
Langmuir ; 25(18): 10648-59, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19670890

ABSTRACT

Grand canonical Monte Carlo simulations are used to study the adsorption of benzene on atomistic silica surfaces and in cylindrical nanopores. The effect of temperature and surface chemistry is addressed by studying the adsorption of benzene at 293 and 323 K on both fully and partially hydroxylated silica surfaces or nanopores. We also consider the adsorption of benzene in a cylindrical nanopore of diameter D=3.6 nm and compare our results with those obtained for planar surfaces. The structure of benzene in the vicinity of the planar surface and confined in the cylindrical nanopore is determined by calculating orientational order parameters and examining positional pair correlation functions. The density profiles of adsorbed benzene reveal the strong layering of the adsorbate, which decays with the distance from the silica surface. At a given temperature and at low pressures, the film adsorbed at the fully hydroxylated silica surface is larger than that for the partially hydroxylated silica surface. This result is due to an increase in the density of silanol groups that induces an increase in the polarity of the silica surface, which becomes more attractive for the adsorbate. Our results also suggest that the benzene molecules prefer an orientation in which their ring is nearly perpendicular to the surface when fully hydroxylated surfaces are considered. When partially hydroxylated surfaces are considered, a second preferential orientation is observed where the benzene ring forms an angle of approximately 50 degrees with the silica surface. In this case, the average orientation of the benzene molecules appears disordered as in the bulk phase. These results suggest that determining the experimental orientation of benzene in the vicinity of a silica surface is a difficult task even when the surface chemistry is known. Capillary condensation in the nanopores involves a transition from a partially filled pore (a thin film adsorbed at the pore surface) to a completely filled pore configuration where the confined liquid coexists at equilibrium with the external gas phase. The disordered orientation of the adsorbed benzene molecules in the case of the partially hydroxylated surface favors the condensation of benzene molecules (the condensation pressure for this substrate is lower than that for the fully hydroxylated surface). Finally, these results are consistent with the structural analysis, showing that (1) benzene tends to relax its liquid structure a little in order to optimize its molecular arrangement near the pore wall and (2) the disordering of the liquid structure induced by the surface becomes stronger as the interaction with the pore wall increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...