Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 14(1): 314, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34108021

ABSTRACT

BACKGROUND: The Aedes aegypti mosquito is responsible for the transmission of several medically important arthropod-borne viruses, including multiple serotypes of dengue virus (DENV-1, -2, -3, and -4). Competition within the mosquito between DENV serotypes can affect viral infection dynamics, modulating the transmission potential of the pathogen. Vector control remains the main method for limiting dengue fever. The insect endosymbiont Wolbachia pipientis is currently being trialed in field releases globally as a means of biological control because it reduces virus replication inside the mosquito. It is not clear how co-infection between DENV serotypes in the same mosquito might alter the pathogen-blocking phenotype elicited by Wolbachia in Ae. aegypti. METHODS: Five- to 7-day-old female Ae. aegypti from two lines, namely, with (wMel) and without Wolbachia infection (WT), were fed virus-laden blood through an artificial membrane with either a mix of DENV-2 and DENV-3 or the same DENV serotypes singly. Mosquitoes were subsequently incubated inside environmental chambers and collected on the following days post-infection: 3, 4, 5, 7, 8, 9, 11, 12, and 13. Midgut, carcass, and salivary glands were collected from each mosquito at each timepoint and individually analyzed to determine the percentage of DENV infection and viral RNA load via RT-qPCR. RESULTS: We saw that for WT mosquitoes DENV-3 grew to higher viral RNA loads across multiple tissues when co-infected with DENV-2 than when it was in a mono-infection. Additionally, we saw a strong pathogen-blocking phenotype in wMel mosquitoes independent of co-infection status. CONCLUSION: In this study, we demonstrated that the wMel mosquito line is capable of blocking DENV serotype co-infection in a systemic way across the mosquito body. Moreover, we showed that for WT mosquitoes, serotype co-infection can affect infection frequency in a tissue- and time-specific manner and that both viruses have the potential of being transmitted simultaneously. Our findings suggest that the long-term efficacy of Wolbachia pathogen blocking is not compromised by arthropod-borne virus co-infection.


Subject(s)
Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Wolbachia/physiology , Aedes/physiology , Animals , Dengue Virus/chemistry , Dengue Virus/classification , Dengue Virus/genetics , Female , Kinetics , Mosquito Vectors/physiology , Viral Load , Virus Replication , Wolbachia/genetics
2.
J Viral Hepat ; 16(3): 187-94, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19175872

ABSTRACT

SUMMARY: The p7 protein of hepatitis C virus (HCV) has been classified into a family of viral proteins, designated viroporins that form ion channels. The M2 protein of influenza virus is the prototype viroporin and encodes a HXXXW motif that constitutes the main functional element of the M2 channels. Alignment of different p7 proteins revealed that a HXXXW sequence (positions 17-21) is also highly conserved among some HCV genotypes. To study the putative HXXXW motif in p7, five mutants of the Japanese fulminant hepatitis 1 strain of HCV that encoded H17A, H17G, H17E, Y21A and Y21W were generated. After transfection of human hepatoma cells with the mutant transcripts, unlike H17A and H17G that produced up to 1 log lower viral titres than wild type, H17E and Y21W showed slightly higher infectivity. In conclusion, this study demonstrated that the HXXXW sequence exists in the p7 proteins of some HCV genotypes and that H17 plays an important role in virus replication.


Subject(s)
Amino Acid Motifs , Hepacivirus/genetics , Viral Matrix Proteins/chemistry , Viral Proteins , Amino Acid Sequence , Cell Line, Tumor , Conserved Sequence , Genotype , Hepacivirus/classification , Hepacivirus/physiology , Humans , Molecular Sequence Data , Mutation , Sequence Analysis, DNA , Viral Matrix Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...