Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Transl Med ; 12(7): 444-458, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37311043

ABSTRACT

Primary and metastatic lung cancer is a leading cause of cancer-related death and novel therapies are urgently needed. Epidermal growth factor receptor (EGFR) and death receptor (DR) 4/5 are both highly expressed in primary and metastatic non-small cell lung cancer (NSCLC); however, targeting these receptors individually has demonstrated limited therapeutic benefit in patients. In this study, we created and characterized diagnostic and therapeutic stem cells (SC), expressing EGFR-targeted nanobody (EV) fused to the extracellular domain of death DR4/5 ligand (DRL) (EVDRL) that simultaneously targets EGFR and DR4/5, in primary and metastatic NSCLC tumor models. We show that EVDRL targets both cell surface receptors, and induces caspase-mediated apoptosis in a broad spectrum of NSCLC cell lines. Utilizing real-time dual imaging and correlative immunohistochemistry, we show that allogeneic SCs home to tumors and when engineered to express EVDRL, alleviate tumor burden and significantly increase survival in primary and brain metastatic NSCLC. This study reports mechanistic insights into simultaneous targeting of EGFR- and DR4/5 in lung tumors and presents a promising approach for translation into the clinical setting.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Hematopoietic Stem Cell Transplantation , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/therapeutic use , Cell Death , Brain Neoplasms/therapy , Cell Proliferation , Brain/pathology
2.
Mol Cell ; 78(6): 1207-1223.e8, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32504554

ABSTRACT

Tumor interferon (IFN) signaling promotes PD-L1 expression to suppress T cell-mediated immunosurveillance. We identify the IFN-stimulated non-coding RNA 1 (INCR1) as a long noncoding RNA (lncRNA) transcribed from the PD-L1 locus and show that INCR1 controls IFNγ signaling in multiple tumor types. Silencing INCR1 decreases the expression of PD-L1, JAK2, and several other IFNγ-stimulated genes. INCR1 knockdown sensitizes tumor cells to cytotoxic T cell-mediated killing, improving CAR T cell therapy. We discover that PD-L1 and JAK2 transcripts are negatively regulated by binding to HNRNPH1, a nuclear ribonucleoprotein. The primary transcript of INCR1 binds HNRNPH1 to block its inhibitory effects on the neighboring genes PD-L1 and JAK2, enabling their expression. These findings introduce a mechanism of tumor IFNγ signaling regulation mediated by the lncRNA INCR1 and suggest a therapeutic target for cancer immunotherapy.


Subject(s)
B7-H1 Antigen/genetics , Interferon-gamma/metabolism , RNA, Long Noncoding/genetics , Aged , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Interferon-gamma/genetics , Interferons/genetics , Interferons/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Mice , Mice, Inbred NOD , Middle Aged , Programmed Cell Death 1 Ligand 2 Protein/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Cytotoxic
SELECTION OF CITATIONS
SEARCH DETAIL
...