Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15205-15220, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38767596

ABSTRACT

An improved version of ORCA's automated generator environment (ORCA-AGE II) is presented. The algorithmic improvements and the move to C++ as the programming language lead to a performance gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain. Additionally, the restructured modular design allows for far more complex code engines to be implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code repository while all actual high-level code is generated automatically, inserted at the appropriate place in the host program before it is compiled and linked together with the hand written code parts. This construction ensures longevity and uniform code quality. Furthermore the new developments allow ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of contributing tensor contractions. We also discuss the automated implementation of nuclear gradients for arbitrary theories. All these improvements enable the implementation of theories that are too complex for the human mind and also reduce development times by orders of magnitude. We hope that this work enables researchers to concentrate on the intellectual content of the theories they develop rather than be concerned with technical details of the implementation.

2.
J Phys Chem Lett ; 15(5): 1195-1203, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38271215

ABSTRACT

Observing pyruvate metabolism in vivo has become a focal point of molecular magnetic resonance imaging. Signal amplification by reversible exchange (SABRE) has recently emerged as a versatile hyperpolarization technique. Tuning of the spin order transfer (SOT) in SABRE is challenging as the small 1H-13C J couplings, in the 13C-pyruvate case, result in SOT being not readily discernible. We demonstrate an experimental method using frequency-selective excitation of parahydrogen-derived polarization SOT sequence (SEPP-SPINEPT); its application led to up to 5700-fold 13C signal gain. In this way, we estimated the lifetime of two Ir-pyruvate SABRE complexes alongside the individual probing of eight small 1H-13C J couplings that connect the hydride protons in these complexes to 1- and 2-13C pyruvate spins, affording values between 0 and 2.69 Hz. Using electronic structure calculations, we define the low-energy structure of the corresponding complexes. Hence, this study demonstrates a novel approach to analyzing the spin topology of short-lived organometallic complexes.

3.
Chemistry ; 30(4): e202301846, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37721802

ABSTRACT

The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronic c i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronic t r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.

4.
J Am Chem Soc ; 145(51): 27922-27932, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38086018

ABSTRACT

The research presented herein explores a cobalt-based catalytic system, distinctively featuring a cooperative boron-centric element within its intricate ligand architecture. This system is strategically engineered to enable the integration of a singular carbon atom into aldehydes, a process culminating in the production of (Z)-silyl enol ethers. Beyond offering an efficient one-pot synthesis route, this method adeptly overcomes challenges inherent to conventional techniques, such as the need for large amounts of additives, restrictive functional group tolerance, and extreme reaction temperatures. Initial mechanistic studies suggest the potential role of a cobalt-carbene complex as a catalytically significant species and underscore the importance of the borane segment. Collectively, these observations highlight the potential of this system in advancing complex bond activation pursuits.

5.
Angew Chem Int Ed Engl ; 62(49): e202313578, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37769154

ABSTRACT

Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p-CF3 -C6 H4 ) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pKa -gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate-limiting transition state in which the initial N-H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4. These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.

6.
Angew Chem Int Ed Engl ; 62(23): e202219127, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36856294

ABSTRACT

The selective activation of C-F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2 ] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.

7.
J Am Chem Soc ; 144(36): 16535-16544, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36053726

ABSTRACT

The development of unconventional strategies for the activation of ammonia (NH3) and water (H2O) is of capital importance for the advancement of sustainable chemical strategies. Herein we provide the synthesis and characterization of a radical equilibrium complex based on bismuth featuring an extremely weak Bi-O bond, which permits the in situ generation of reactive Bi(II) species. The ensuing organobismuth(II) engages with various amines and alcohols and exerts an unprecedented effect onto the X-H bond, leading to low BDFEX-H. As a result, radical activation of various N-H and O-H bonds─including ammonia and water─occurs in seconds at room temperature, delivering well-defined Bi(III)-amido and -alkoxy complexes. Moreover, we demonstrate that the resulting Bi(III)-N complexes engage in a unique reactivity pattern with the triad of H+, H-, and H• sources, thus providing alternative pathways for main group chemistry.


Subject(s)
Ammonia , Bismuth , Amines , Ammonia/chemistry , Bismuth/chemistry , Water/chemistry
8.
Dalton Trans ; 51(13): 5016-5023, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35257127

ABSTRACT

Using a combination of NMR, single crystal X-ray diffraction (sc-XRD) and quantum chemistry, the structure-directing role of London Dispersion (LD) is demonstrated for dibismuthane Bi2Naph2 (1). 1 shows intermolecular Bi⋯π contacts in the solid-state, while π⋯π interactions as observed in the lighter homologues are missing. Comparison of the whole series of dipnictanes revealed the influence of the pnictogen atom on the strength of London dispersion and highlights its importance in heavy main group element chemistry.

9.
J Chem Theory Comput ; 18(4): 2408-2417, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35353527

ABSTRACT

In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional as well as MP2, using the domain-based local pair natural orbital (DLPNO) formalism, to calculate the NMR SCs of six amino acid crystals. All the electronic structure methods used exhibit good correlation of the NMR shieldings with respect to experimental chemical shifts for both 1H and 13C. We also find that local electronic structure is much more important than the long-range electrostatic effects for these systems, implying that cluster approaches using all-electron/Gaussian basis set methods might offer great potential for predictive computations of solid-state NMR parameters for organic solids.


Subject(s)
Amino Acids , Electronics , Magnetic Resonance Spectroscopy , Models, Molecular , Static Electricity
10.
J Am Chem Soc ; 143(32): 12473-12479, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34351134

ABSTRACT

A H(C)Rh triple resonance NMR experiment makes the rapid detection of 103Rh chemical shifts possible, which were previously beyond reach. It served to analyze a series of dirhodium and bismuth-rhodium paddlewheel complexes of the utmost importance for metal-carbene chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the pertinent shielding tensors forms a sound basis for a qualitative and quantitative interpretation of these otherwise (basically) inaccessible data. The observed trends clearly reflect the influence exerted by the equatorial ligands (carboxylate versus carboxamidate), the axial ligands (solvents), and the internal "metalloligand" (Rh versus Bi) on the electronic estate of the reactive Rh(II) center.

11.
Chemistry ; 27(58): 14520-14526, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34342068

ABSTRACT

The noncovalent interactions of heavy pnictogens with π-arenes play a fundamental role in fields like crystal engineering or catalysis. The strength of such bonds is based on an interplay between dispersion and donor/acceptor interactions, and is generally attributed to the presence of π-arenes. Computational studies of the interaction between the heavy pnictogens As, Sb and Bi and cyclohexane, in comparison with previous studies on the interaction between heavy pnictogens and benzene, show that this concept probably has to be revised. A thorough analysis of all the different energetic components that play a role in these systems, carried out with state-of-the-art computational methods, sheds light on how they influence one another and the effect that their interplay has on the overall system. Furthermore, the analysis of such interactions leads us to the unexpected finding that the presence of the pnictogen compounds strongly affects the conformational equilibrium of cyclohexane, reversing the relative stability of the chair and boat-twist conformers, and thus suggesting a possible application of tuneable dispersion energy donors to stabilise the desired conformation.


Subject(s)
Benzene , Quantum Theory , Molecular Conformation
12.
J Chem Phys ; 154(16): 164110, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940835

ABSTRACT

We present a derivation and efficient implementation of the formally complete analytic second derivatives for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory (MP2) method, applicable to electric or magnetic field-response properties but not yet to harmonic frequencies. We also discuss the occurrence and avoidance of numerical instability issues related to singular linear equation systems and near linear dependences in the projected atomic orbital domains. A series of benchmark calculations on medium-sized systems is performed to assess the effect of the local approximation on calculated nuclear magnetic resonance shieldings and the static dipole polarizabilities. Relative deviations from the resolution of the identity-based MP2 (RI-MP2) reference for both properties are below 0.5% with the default truncation thresholds. For large systems, our implementation achieves quadratic effective scaling, is more efficient than RI-MP2 starting at 280 correlated electrons, and is never more than 5-20 times slower than the equivalent Hartree-Fock property calculation. The largest calculation performed here was on the vancomycin molecule with 176 atoms, 542 correlated electrons, and 4700 basis functions and took 3.3 days on 12 central processing unit cores.

13.
J Chem Theory Comput ; 16(11): 6950-6967, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32966067

ABSTRACT

In this work, we explore the accuracy of post-Hartree-Fock (HF) methods and double-hybrid density functional theory (DFT) for the computation of solid-state NMR chemical shifts. We apply an embedded cluster approach and investigate the convergence with cluster size and embedding for a series of inorganic solids with long-range electrostatic interactions. In a systematic study, we discuss the cluster design, the embedding procedure, and basis set convergence using gauge-including atomic orbital (GIAO) NMR calculations at the DFT and MP2 levels of theory. We demonstrate that the accuracy obtained for the prediction of NMR chemical shifts, which can be achieved for molecular systems, can be carried over to solid systems. An appropriate embedded cluster approach allows one to apply methods beyond standard DFT even for systems for which long-range electrostatic effects are important. We find that an embedded cluster should include at least one sphere of explicit neighbors around the nuclei of interest, given that a sufficiently large point charge and boundary effective potential embedding is applied. Using the pcSseg-3 basis set and GIAOs for the computation of nuclear shielding constants, accuracies of 1.6 ppm for 7Li, 1.5 ppm for 23Na, and 5.1 ppm for 39K as well as 9.3 ppm for 19F, 6.5 ppm for 35Cl, 7.4 ppm for 79Br, and 7.5 ppm for 25Mg as well as 3.8 ppm for 67Zn can be achieved with MP2. Comparing various DFT functionals with HF and MP2, we report the superior quality of results for methods that include post-HF correlation like MP2 and double-hybrid DFT.

14.
J Chem Phys ; 152(16): 164303, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32357787

ABSTRACT

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.

15.
Angew Chem Int Ed Engl ; 59(35): 15008-15013, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32427395

ABSTRACT

Buckyballs (fullerenes) were first reported over 30 years ago, but still little is known regarding their natural occurrence, since they have so far only been found at sites of high-energy incidents, such as lightning strikes or meteor impacts, but have not been reported in low-energy materials like fossil fuels. Using ultrahigh-resolution mass spectrometry, a wide range of fullerenes from C30 to C114 was detected in the asphaltene fraction of a heavy crude oil, together with their building blocks of C10n H10 stoichiometry. High-level DLPNO-CCSD(T) calculations corroborate their stability as spherical and hemispherical species. Interestingly, the maximum intensity of the fullerenes was found at C40 instead of the major fullerene C60 . Hence, experimental evidence supported by calculations show the existence of not only buckyballs but also buckybowls as 3-dimensional polyaromatic compounds in fossil materials.

16.
Phys Chem Chem Phys ; 22(18): 10189-10211, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32347835

ABSTRACT

A series of 2-biphenyl bismuth(iii) compounds of the type (2-PhC6H4)3-nBiXn [n = 0 (1); n = 1, X = Cl (2), Br (3), I (4), Me (5); n = 2, X = Cl (6), Br (7), I (8)] has been synthesized and analyzed with focus on intramolecular London dispersion interactions. The library of the compounds was set up in order to investigate the Biπ arene interaction by systematic variation of X. The structural analysis in the solid state revealed that the triarylbismuth(iii) compound 1 shows an encapsulation of the metal atom but the distances between the bismuth atom and the phenyl centroids amount to values close to or larger than 4.0 Å, which is considered to be a rather week dispersion interaction. In the case of monomeric diorganobismuth(iii) compounds 2-5 the moderate crowding effectively hinders the formation of intermolecular donor-acceptor interactions, but allows for intramolecular dispersion-type interactions with the 2-biphenyl ligand. In contrast, the structures of the monoorganobismuth compounds 6-8 show the formation of Bi-XBi donor-acceptor bonds leading to the formation of 1D ribbons in the solid state. These coordination bonds are accompanied by intermolecular dispersion interactions with BiPhcentroid distances < 4.0 Å. In solution the diorganobismuth(iii) halides 2-4 show a broadening of their NMR signals (H-8, H-8' and H-9, H-9' protons of the 2-biphenyl ligand), which is a result of dynamic processes including ligand rotation. For further elucidation of these processes compounds 2, 4 and 7 were studied by temperature-dependent NMR spectroscopy. Electronic structure calculations at the density functional theory and DLPNO-coupled cluster level of theory were applied to investigate and quantify the intramolecular London dispersion interactions, in an attempt to distinguish between basic intramolecular interactions and packing effects and to shed light on the dynamic behavior in solution.

17.
Angew Chem Int Ed Engl ; 59(14): 5788-5796, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31850662

ABSTRACT

Direct selective oxidation of hydrocarbons to oxygenates by O2 is challenging. Catalysts are limited by the low activity and narrow application scope, and the main focus is on active C-H bonds at benzylic positions. In this work, stable, lead-free, Cs3 Bi2 Br9 halide perovskites are integrated within the pore channels of mesoporous SBA-15 silica and demonstrate their photocatalytic potentials for C-H bond activation. The composite photocatalysts can effectively oxidize hydrocarbons (C5 to C16 including aromatic and aliphatic alkanes) with a conversion rate up to 32900 µmol gcat -1 h-1 and excellent selectivity (>99 %) towards aldehydes and ketones under visible-light irradiation. Isotopic labeling, in situ spectroscopic studies, and DFT calculations reveal that well-dispersed small perovskite nanoparticles (2-5 nm) possess enhanced electron-hole separation and a close contact with hydrocarbons that facilitates C(sp3 )-H bond activation by photoinduced charges.

18.
Chemphyschem ; 20(19): 2539-2552, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31369692

ABSTRACT

High-level ab initio calculations using the DLPNO-CCSD(T) method in conjunction with the local energy decomposition (LED) were performed to investigate the nature of the intermolecular interaction in bismuth trichloride adducts with π arene systems. Special emphasis was put on the effect of substituents in the aromatic ring. For this purpose, benzene derivatives with one or three substituents (R=NO2 , CF3 , OCHO, OH, and NH2 ) were chosen and their influence on donor-acceptor interaction as well as on the overall interaction strength was examined. Local energy decomposition was performed to gain deeper insight into the composition of the interaction. Additionally, the study was extended to the intermolecular adducts of arsenic and antimony trichloride with benzene derivatives having one substituent (R=NO2 and NH2 ) in order to rationalize trends in the periodic table. The analysis of natural charges and frontier molecular orbitals shows that donor-acceptor interactions are of π→σ* type and that their strength correlates with charge transfer and orbital energy differences. An analysis of different bonding motifs (Bi⋅⋅⋅π arene, Bi⋅⋅⋅R, and Cl⋅⋅⋅π arene) shows that if dispersion and donor-acceptor interaction coincide as the donor highest occupied molecular orbital (HOMO) of the arene is delocalized over the π system, the M⋅⋅⋅π arene motif is preferred. If the donor HOMO is localized on the substituent, R⋅⋅⋅π arene bonding motifs are preferred. The Cl⋅⋅⋅π arene bonding motif is the least favorable with the lowest overall interaction energy.

19.
J Chem Phys ; 150(4): 041705, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709289

ABSTRACT

High Resolution Transmission Electron Microscopy (HR TEM) is used to identify the size, shape, and interface structure of platinum nanoparticles and carbon support of a fuel cell catalyst. Using these insights, models accessible to quantum chemical methods are designed in order to rationalize the observed features. Thus, basal plane and prism face models of the carbon black material are considered, interacting with Pt clusters of sizes up to 1 nm. Particular attention is paid to the electronic structure of the carbon support, namely, the radical character of graphene zig-zag edges. The results show that a stronger interaction is found when the nanoparticle is at the zig-zag edge of a basal plane due to the combination of dispersion interaction with the support structure and covalent interaction with carbon atoms at the edge. In this case, a distortion of both the Pt nanoparticle and the carbon support is observed, which corresponds to the observations from the HR TEM investigation. Furthermore, the analysis of the charge transfer upon interaction and the influence of the potential on the charge states and structure is carried out on our model systems. In all cases, a clear charge transfer is observed from the carbon support to the Pt nanoparticle. Finally, we show that changing the potential not only can change the charge state of the system but can also affect the nature of the interaction between Pt nanoparticles and carbon supports.

20.
Dalton Trans ; 48(1): 220-230, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30516218

ABSTRACT

The spirocyclic tin salicyl alcoholate, 4H,4'H-2,2'-spirobi[benzo[d][1,3,2]dioxastannine] (1), and its 6,6'-dimethoxy (2) and 8,8'-di-tert-butyl-6,6'-dimethyl derivative (3) were synthesized and thermally induced twin polymerization of precursor 2 was performed to give a SnO2-containing hybrid material. Studies on the molecular structures of 1-3 were carried out using 119Sn{1H} CP MAS NMR spectroscopy and DFT calculations. Crystallization of compound 3 from dimethyl sulfoxide solution provided the Lewis acid-base adduct 3(dmso)2 exhibiting a hexacoordinated tin atom in the solid state, in agreement with the results of the spectroscopic and DFT calculation data. 119Sn NMR spectroscopy of the compounds 1-3 and 3(dmso)2 revealed equilibria among the diverse oligomers in solution phase pointing at hexacoordinated tin atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...