Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 132(22): 224503, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20550404

ABSTRACT

We introduce a sparse-matrix algorithm that allows for the simulation of two-dimensional infrared (2DIR) spectra in systems with many coupled chromophores. We apply the method to bulk water, and our results are based on the recently developed ab initio maps for the vibrational Hamiltonian. Qualitative agreement between theory and experiment is found for the 2DIR spectra without the use of any fitting or scaling parameters in the Hamiltonian. The calculated spectra for bulk water are not so different from those for HOD in D(2)O, which we can understand by considering the spectral diffusion time-correlation functions in both cases. We also calculate the ultrafast anisotropy decay, which is dominated by population transfer, finding very good agreement with experiment. Finally, we determine the vibrational excitation diffusion rate, which is more than two orders of magnitude faster than the diffusion of the water molecules themselves.

2.
J Chem Phys ; 131(14): 144511, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19831456

ABSTRACT

We study theoretically the steady-state and ultrafast vibrational spectroscopy, in the OD-stretch region, of dilute HOD in aqueous solutions of sodium bromide. Based on electronic-structure calculations on clusters containing salt ions and water, we develop new spectroscopic maps that enable us to undertake this study. We calculate OD-stretch absorption line shapes as a function of salt concentration, finding good agreement with experiment. We provide molecular-level understandings of the monotonic (as a function of concentration) blueshift, and nonmonotonic line width. We also calculate the frequency time-correlation function, as measured by spectral diffusion experiments. Here again we obtain good agreement with experiment, finding that at the highest salt concentration spectral diffusion slows down by a factor of 3 or 4 (compared to pure water). For longer times than can be accessed experimentally, we find that spectral diffusion is very complicated, with processes occurring on multiple time scales. We argue that from 6 to 40 ps, relaxation involves anionic solvation shell rearrangements. Finally, we consider our findings within the general context of the Hofmeister series, concluding that this series must reflect only local ordering of water molecules.


Subject(s)
Bromides/chemistry , Sodium Compounds/chemistry , Vibration , Water/chemistry , Deuterium Oxide/chemistry , Diffusion , Electrons , Hydroxides/chemistry , Molecular Dynamics Simulation , Salts/chemistry , Solutions , Spectrophotometry, Infrared
3.
J Phys Chem B ; 113(13): 4125-30, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19425249

ABSTRACT

We present theoretical calculations of the vibrational sum-frequency susceptibility for the water liquid/vapor interface. Our approach builds on previous calculations by us and others, using the time-averaging approximation within the mixed quantum/classical formulation for coupled vibrational chromophores, and electric-field maps for transition frequencies, dipoles, polarizabilities, and intramolecular vibrational couplings. We compare our results for the imaginary part of the susceptibility to those from recent experiments, and comment about the effects of intermolecular vibrational coupling and the assignment of features in the spectrum.

4.
J Chem Phys ; 129(21): 214705, 2008 Dec 07.
Article in English | MEDLINE | ID: mdl-19063573

ABSTRACT

An electronic structure/molecular dynamics approach, originally developed to describe the vibrational spectroscopy of the OH stretch of dilute HOD in liquid D(2)O, is applied to the vibrational sum-frequency spectroscopy of the liquid/vapor interface of this system. In both cases the OH stretch is effectively decoupled from the OD stretches, allowing it to act as a local probe of structure and dynamics. A mixed quantum/classical expression for the vibrational sum-frequency response that includes the effect of motional narrowing is used to calculate the resonant susceptibility. Despite being developed for the bulk liquid, our method works well for the surface in that the real and imaginary parts of the resonant susceptibility are in good agreement with experiment. We explore the nature of hydrogen bonding at the interface as well as its impact on the sum-frequency spectrum. It is found that the spectrum is dominated by single-donor molecules with a total of two or three hydrogen bonds.

5.
J Chem Phys ; 128(22): 224511, 2008 Jun 14.
Article in English | MEDLINE | ID: mdl-18554033

ABSTRACT

IR and Raman (parallel- and perpendicular-polarized) spectra in the OH stretch region for liquid water were measured some years ago, but their interpretation is still controversial. In part, this is because theoretical calculation of such spectra for a neat liquid presents a formidable challenge due to the coupling between vibrational chromophores and the effects of motional narrowing. Recently we proposed an electronic structure/molecular dynamics method for calculating spectra of dilute HOD in liquid D(2)O, which relied on ab initio calculations on clusters to provide a map from nuclear coordinates of the molecules in the liquid to OH stretch frequencies, transition dipoles, and polarizabilities. Here we extend this approach to the calculation of couplings between chromophores. From the trajectories of the fluctuating local-mode frequencies, transition moments, and couplings, we use our recently developed time-averaging approximation to calculate the line shapes. Our results are in good agreement with experiment for the IR and Raman line shapes, and capture the significant differences among them. Our analysis shows that while the coupling between chromophores is relatively modest, it nevertheless produces delocalization of the vibrational eigenstates over up to 12 chromophores, which has a profound effect on the spectroscopy. In particular, our results demonstrate that the peak in the parallel-polarized Raman spectrum at about 3250 wavenumbers is collective in nature.

6.
J Chem Phys ; 127(10): 104105, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17867735

ABSTRACT

For an isolated resonance of an isolated chromophore in a condensed phase, the absorption line shape is often more sharply peaked than the distribution of transition frequencies as a result of motional narrowing. The latter arises from the time-dependent fluctuations of the transition frequencies. It is well known that one can incorporate these dynamical effects into line shape calculations within a semiclassical approach. For a system of coupled chromophores, both the transition frequencies and the interchromophore couplings fluctuate in time. In principle one can again solve this more complicated problem with a related semiclassical approach, but in practice, for large numbers of chromophores, the computational demands are prohibitive. This has led to the development of a number of approximate theoretical approaches to this problem. In this paper we develop another such approach, using a time-averaging approximation. The idea is that, for a single chromophore, a motionally narrowed line shape can be thought of as a distribution of time-averaged frequencies. This idea is developed and tested on both stochastic and more realistic models of isolated chromophores, and also on realistic models of coupled chromophores, and it is found that in all cases this approximation is quite satisfactory, without undue computational demands. This approach should find application for the vibrational spectroscopy of neat liquids, and also for proteins and other complicated multichromophore systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...