Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 7: 100807, 2020.
Article in English | MEDLINE | ID: mdl-32195131

ABSTRACT

The total phosphorus analyte (TP) has a long history of use in monitoring and regulatory applications relating to management of cultural eutrophication in freshwaters. It has become apparent, however, that the fraction of the TP analyte ultimately available to support algal growth varies significantly spatially (within a system), seasonally, and among systems. The algal bioassay methods described here provide an approach for determining the bioavailable fraction of the three operationally defined components of TP: soluble reactive phosphorus (SRP), dissolved organic phosphorus (DOP), and particulate phosphorus (PP) in effluents and tributaries discharging to lakes and reservoirs. Application of the technique facilitates a quantitative ranking and targeting of bioavailable phosphorus sources for management.•One congruent method to fractionate particulate and soluble phosphorus (found in aquatic samples) into bioavailable and unavailable fractions was developed based on compilation, adaptation and expansion of two methods from the late 1970s and early 1980s.•Detailed descriptions for culturing phosphorus-starved algae, sub-sampling schedules, kinetics determination, and data presentation are provided•Reproducibility is demonstrated by replication and closure of a mass balance on phosphorus.

2.
Water Environ Res ; 85(1): 13-26, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23409450

ABSTRACT

A retrospective review and analysis are presented of the evolution of treatment, point of discharge considerations, and constituent loading from the Metropolitan Syracuse Wastewater Treatment Plant (Metro), and the coupled water quality effects on the receiving urban lake (Onondaga Lake, New York) from the early 1970s to 2010. The analysis is based on long-term monitoring of the discharge, Onondaga Lake, and a nearby river system considered as a potential alternate to receive the effluent. The Metro discharge is extraordinarily large relative to the lake's hydrologic budget, representing approximately 25% of the total inflow, greater than for any other lake in the United States. The large loads of nitrogen and phosphorus received from the facility resulted in severe water quality effects in the lake during the early portion of record, including (1) violations of standards to protect against toxic effects of ammonia and nitrite, (2) violations of the water clarity standard for swimming safety, (3) exceedances of a limit for the summer average concentration of total phosphorus in the upper waters, and (4) lakewide violations of the oxygen standard during fall turnover. The effects of Metro were compounded by effects of discharges from soda ash/chlor-alkali and pharmaceutical manufacturing facilities. The sedimentary record of the lake indicates that even greater levels of cultural eutrophication prevailed before the monitoring commenced. Dramatic improvements in the water quality of the lake were achieved in recent years by implementing advanced treatment technologies. Exceedances of receiving water limits in the lake were eliminated, with the exception of the total phosphorus limit. A zebra mussel invasion compromised the oxygen resources and assimilative capacity of the nearby river for more than 15 years. This eliminated an option, previously supported by managers, of full diversion of the Metro effluent to the river.


Subject(s)
Lakes , Wastewater , Retrospective Studies , Urbanization , Water Quality
3.
J Environ Manage ; 113: 61-70, 2012 Dec 30.
Article in English | MEDLINE | ID: mdl-22996002

ABSTRACT

The discharge of untreated or poorly treated wastewater to river systems remains a major problem affecting public and environmental health, particularly in rural communities of less developed countries. One of the primary goals in setting policies for wastewater management is to reduce risks to human health associated with microbial contamination of receiving water. In this study, we apply a surface water quality model to develop an Escherichia coli based indicator that reflects the quality of surface water and the potential impact to recreational users in a large, rural river in northwest Mexico (upper Sonora River). The model assesses the relative importance of streamflow variations and the uncertainty in E. coli removal coefficient parameters for the predictions of E. coli concentrations in the river. Given the sparse information on streamflow, we use a physically-based, distributed hydrologic model to generate tributary contributions to the river. We determined the best estimate and uncertainty of E. coli removal rates to explore the impacts of parameter uncertainty on the transport of E. coli downstream from two wastewater discharge zones. Our results depict the regions in the river that are in noncompliance with fresh water pathogen norms. The impact of streamflow variability and uncertainty in the removal rates of pathogen indicators was used to derive a range of river distances in noncompliance. The comparison between two sites with different streamflow behaviors was used to illustrate the impacts of streamflow spatiotemporal variability on pathogen indicators. We derive a simple relationship that can be used to assess the relative importance of dilution (ratio of wastewater discharge to river discharge) and pathogen removal (ratio of residence time to reaction time).


Subject(s)
Environmental Monitoring/methods , Public Health , Rivers/microbiology , Humans , Mexico , Water Pollutants, Chemical/analysis
4.
Water Environ Res ; 84(3): 254-64, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755493

ABSTRACT

Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall. All of these diminishing effects were found to be operative for the Metro effluent in Onondaga Lake and will be integrated into a forthcoming phosphorus "total maximum daily load" analysis for the lake, through appropriate representation in a supporting mechanistic water quality model. The particulate phosphorus in the effluent was associated entirely with Fe-rich particles formed in the phosphorus treatment process. These particles did not contribute to concentrations in pelagic portions of the lake, due to local deposition associated with their large size. Moreover, this particulate phosphorus was found to be nearly entirely unavailable to support algae growth. While substantial differences are to be expected for various inputs, the effective loading concept and the approaches adopted here to assess the diminishing factors are broadly applicable.


Subject(s)
Fresh Water/analysis , Phosphorus/analysis , Waste Disposal, Fluid , Water Purification , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...