Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171932, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522527

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent chemicals that have been associated with a diverse array of adverse environmental and human health related effects. In addition to a growing list of health concerns, PFAS are also ubiquitously used and pervasive in our natural and built environments, and they have an innate ability to be highly mobile once released into the environment with an unmatched ability to resist degradation. As such, PFAS have been detected in a wide variety of environmental matrices, including soil, water, and biota; however, the matrix that largely dictates human exposure to PFAS is drinking water, in large part due to their abundance in water sources and our reliance on drinking water. As Florida is heavily reliant upon water and its varying sources, the primary objective of this study was to survey the presence of PFAS in drinking water collected from taps from the state of Florida (United States). In this study, 448 drinking water samples were collected by networking with trained citizen scientists, with at least one sample collected from each of the 67 counties in Florida. Well water, tap water, and bottled water, all sourced from Florida, were extracted and analyzed (31 PFAS) using isotope dilution and ultra-high-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Overall, when examining ∑PFAS: the minimum, maximum, median, and mean were ND, 219, 2.90, and 14.06 ng/L, respectively. The data herein allowed for a comparison of PFAS in drinking water geographically within the state of Florida, providing vital baseline concentrations for prospective monitoring and highlighting hotspots that require additional testing and mitigation. By incorporating citizen scientists into the study, we aimed to educate impacted communities regarding water quality issues and solutions.


Subject(s)
Alkanesulfonic Acids , Crowdsourcing , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Florida , Prospective Studies , Tandem Mass Spectrometry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis
2.
Heliyon ; 8(8): e10239, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36090227

ABSTRACT

As the persistence of per- and polyfluoroalkyl substances (PFAS) become a global concern, information about the occurrence and characteristics of PFAS in estuarine and marine ecosystems is poorly represented. In this study, the presence of 51 PFAS were monitored in the Pensacola Bay System (PBS), Florida, USA. Due to the presence of many potential PFAS sources in close proximity to the PBS (e.g., military bases, industries, airports and several firefighting stations), the distribution and concentration of PFAS in this estuarine environment provides insights into the fate of these complex compounds as well as the possible impacts on coastal systems. Surface water was collected and analyzed from 45 different sites via Strata-X-AW cartridge extractions and ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Recoveries for many PFAS (13/51) were >60% (mean 77 %), with relative standard deviations below 20%, except for N-methylperfluoro-1-octanesulfonamidoacetic acid (N-MeFOSAA) (22%). Of the perfluoroalkyl carboxylic acids (PFCAs), which comprised the majority of PFAS detected: perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were present in all samples; however, perfluoropentanoic acid (PFPeA) was the individual PFAS with the highest concentration of this group (51.9 ng.L-1, at site 81). The PFAS detected at the highest concentrations were perfluoroalkyl sulfonic acids (PFSA), with perfluorooctane sulfonic acid (PFOS) having the highest detected concentration (269 ng.L-1, at site 81). At all sites, at least eight or more PFAS were quantified. Past and current use of PFAS-containing materials and their fate in areas surrounding military bases, airports, and industries, require more in-depth monitoring efforts to better determine the need for regulation, management, and/or remediation. Here, sites located close to areas suspected of PFAS use had elevated concentrations. For example, one coastal location near an airfield had a ΣPFAS of 677 ng.L-1. Expansion from these ongoing efforts will focus on assessment of PFAS-related effects in local wildlife and evaluating the distribution of PFAS at these "hotspot" sites during large episodic weather events, a critically understudied phenomenon regarding PFAS and vulnerable coastal environments.

3.
Chemosphere ; 301: 134478, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35367496

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitute a class of highly stable and extensively manufactured anthropogenic chemicals that have been linked to a variety of adverse health effects in humans and wildlife. These compounds are ubiquitously distributed in the environment and have been measured in aquatic systems globally. However, there are limited data on longitudinal comprehensive assessments of PFAS profiles within sensitive aquatic ecosystems. Surface water samples were collected from the Indian River Lagoon (IRL) and the Atlantic coast within Brevard County (BC), FL in December of 2019 (n = 57) and again from corresponding locations in February of 2021 (n = 40). Samples were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the occurrence, concentration, and distribution of 92 PFAS. No significant difference in total PFAS concentrations were identified between samples collected in 2019 (87 ng/L) and those collected in 2021 (77 ng/L). However, comparisons of PFAS among four natural sub-regions within Brevard County revealed site- and regional-specific differences. The Banana River exhibited the greatest concentration of total PFAS, followed by the southern Indian River, the northern Indian River, and then the Atlantic coast. Six distinct PFAS profiles were identified with the novel application of multivariate statistical cluster analysis, which may be useful for identifying potential sources of PFAS. Elevated total PFAS and unique compound mixtures identified in the Banana River are most likely a result of industrial discharge and extensive historical use of aqueous film-forming foams (AFFF). The environmental persistence of PFAS threatens key ecosystem services and the ecological homeostasis of the Indian River Lagoon - the most biologically diverse estuary in North America. Brevard County offers a unique model site that may be used to investigate potential exposure and health implications for wildlife and adjacent coastal communities, which could be extrapolated to better understand and manage other critical coastal systems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Fluorocarbons/analysis , Humans , Rivers , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 809: 151143, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34695459

ABSTRACT

Oceans are major sinks for anthropogenic pollutants, including per- and polyfluoroalkyl substances (PFAS). Although PFAS have been detected in surface waters globally, this is the first report of PFAS in a deep (170-400 m) demersal species in the Gulf of Mexico (GoM). Golden Tilefish (Lopholatilus chamaeleonticeps) plasma extracts (n = 185) were investigated for the presence of PFAS using ultra-high performance liquid chromatography-tandem mass spectrometry. A subset of liver tissues (n = 51) were also analyzed for microscopic hepatic changes (MHCs). Overall, nine of the 110 PFAS targeted were detected in Tilefish plasma at relatively high frequencies. Plasma concentrations of total PFAS (Σ9PFAS) ranged from below the detection limit to 27.9 ng g-1 w.w. Significant regional differences were observed with the highest concentrations of PFAS detected in the north central region of the GoM, where substantial industrialization and discharges from the Mississippi River occur. Compared to most wildlife and matrices analyzed globally, the PFAS profiles in Tilefish were unique as they are dominated by PFUnDA. Profile differences are hypothesized to be the result of Tilefish's distinctive lifestyle, habitat, diet, and partitioning characteristics of long-chain PFAS. Several MHCs were identified in this subset of Tilefish that could be detrimental to their health. Significant correlations between PFAS concentrations and biometric indices and MHCs were evident, however, additional research is needed to investigate the role PFAS and PFAS combined with chemical admixtures may play in inducing observed hepatic changes and other physiological effects in Tilefish. These findings give insight into the fate of PFAS at depth in aquatic ecosystems and are cause for concern regarding the health of other deep water benthic biota in GoM and other deepwater sinks for PFAS.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Fluorocarbons/analysis , Liver/chemistry , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 56(10): 6069-6077, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34596397

ABSTRACT

One hundred and seventeen street sweeping samples were collected and analyzed for per- and polyfluoroalkyl substances (PFAS). Fifty-six samples were collected in one city (Gainesville, Florida) allowing for an in-depth city-wide characterization. Street sweepings from five other urban areas, (Orlando, n = 15; Key West, n = 15; Pensacola, n = 12; Tampa, n = 13; and Daytona Beach, n = 6) were analyzed to provide a city-to-city comparison of PFAS. Within our analytical workflow, 37 PFAS were quantified across all samples, while the maximum number of PFAS quantified at one site was 26. Of those PFAS quantified in Gainesville, 60% were perfluoroalkyl acids (PFAAs) and 33% were precursors to PFAA. Among the PFAAs, short-chain perfluoroalkyl carboxylic acids (PFCAs) were the dominant class representing 26% of the total PFAS by concentration. In the comparison across different urban cities, the dominant compound by concentration and frequency of detection varied; however, perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonic acid (PFOSlin) were the two PFAS that were detected the most frequently. This study documents the first-time detection of hexadecafluorosebacic acid and perfluoro-3,6,9-trioxaundecane-1,11-dioic acid within environmental samples.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Carboxylic Acids , Cities , Florida , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
7.
Environ Adv ; 5: 1-8, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-38268644

ABSTRACT

Sediment samples from 25 locations in the Pensacola Bay System (PBS) watershed were analyzed for the presence of 51 per- and polyfluoroalkyl substances (PFAS) using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and selected reaction monitoring. Results revealed quantifiable concentrations of PFAS in all sampling locations. More specifically, perfluorobutanoic acid (PFBA) was present in every sediment sample with a minimum and maximum concentration of 0.04 to 0.48 ng g-1 dry weight, respectively, across the 25 sites with an average of 0.1 ± 0.09 ng g-1. While PFOS, with an average of 0.11 ± 0.14 ng g-1 (range:

8.
Animals (Basel) ; 7(7)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28665336

ABSTRACT

This qualitative study identified a study area by visualizing one year of animal intake from a municipal animal shelter on geographic information systems (GIS) maps to select an area of high stray-dog intake to investigate. Researchers conducted semi-structured interviews with residents of the selected study area to elucidate why there were high numbers of stray dogs coming from this location. Using grounded theory, three themes emerged from the interviews: concerns, attitudes, and disparities. The residents expressed concerns about animal welfare, personal safety, money, and health. They held various attitudes toward domestic animals in the community, including viewing them as pets, pests, or useful commodities (products). Residents expressed acceptance as well as some anger and fear about the situation in their community. Interviewees revealed they faced multiple socioeconomic disparities related to poverty. Pet abandonment can result when pet owners must prioritize human needs over animal needs, leading to increased shelter intake of stray dogs. Community-specific strategies for reducing local animal shelter intake should address the issue of pet abandonment by simultaneously targeting veterinary needs of animals, socioeconomic needs of residents, and respecting attitude differences between residents and shelter professionals.

SELECTION OF CITATIONS
SEARCH DETAIL
...