Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(5): e0233402, 2020.
Article in English | MEDLINE | ID: mdl-32407373

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0200274.].

2.
J Nematol ; 51: 1-17, 2019.
Article in English | MEDLINE | ID: mdl-31088023

ABSTRACT

Human activity has extensively transformed the land surface by agricultural intensification and urbanization. In soil, nematodes are the most abundant invertebrates. The effect of human interventions was assessed on overall richness, overall abundance, richness and abundance of nematodes of each trophic group and colonizer-persister (c-p) guild by comparing urban, agriculture and disturbed grassland (DGL) with natural grassland (NGL) and forest ecosystems. Meta-analyses were conducted to generate quantitative summaries from 111 published articles that met the inclusion criteria, 91 expressed data in grams and 20 expressed data in cm3. Results from data expressed per 100 g of soil indicated that overall richness was higher in forest than in NGL, DGL, urban, and agriculture ecosystems. The richness of all c-p guilds and of all trophic groups except herbivores was highest in forest ecosystems. In contrast, overall abundance was highest in DGL, agriculture and forest ecosystems. The abundance of c-p 1, c-p 2 and c-p 3 guilds and bacterivores, fungivores and herbivores was highest in disturbed ecosystems, while the abundance of c-p 4 and c-p 5 guilds and predators and omnivores was highest in relatively undisturbed ecosystems. Results from data expressed as nematodes per 100 cm3 of soil indicated that abundance followed a similar pattern, but richness often differed between the two methodologies. These meta-analyses strengthen the concept that human interventions adversely impact both richness and abundance using nematodes as soil health bioindicators.Human activity has extensively transformed the land surface by agricultural intensification and urbanization. In soil, nematodes are the most abundant invertebrates. The effect of human interventions was assessed on overall richness, overall abundance, richness and abundance of nematodes of each trophic group and colonizer-persister (c-p) guild by comparing urban, agriculture and disturbed grassland (DGL) with natural grassland (NGL) and forest ecosystems. Meta-analyses were conducted to generate quantitative summaries from 111 published articles that met the inclusion criteria, 91 expressed data in grams and 20 expressed data in cm3. Results from data expressed per 100 g of soil indicated that overall richness was higher in forest than in NGL, DGL, urban, and agriculture ecosystems. The richness of all c-p guilds and of all trophic groups except herbivores was highest in forest ecosystems. In contrast, overall abundance was highest in DGL, agriculture and forest ecosystems. The abundance of c-p 1, c-p 2 and c-p 3 guilds and bacterivores, fungivores and herbivores was highest in disturbed ecosystems, while the abundance of c-p 4 and c-p 5 guilds and predators and omnivores was highest in relatively undisturbed ecosystems. Results from data expressed as nematodes per 100 cm3 of soil indicated that abundance followed a similar pattern, but richness often differed between the two methodologies. These meta-analyses strengthen the concept that human interventions adversely impact both richness and abundance using nematodes as soil health bioindicators.

3.
PLoS One ; 13(7): e0200274, 2018.
Article in English | MEDLINE | ID: mdl-29990337

ABSTRACT

Ecological research suggests increased diversity may improve ecosystem services, as well as yield stability; however, such theories are sometimes disproven by agronomic research, particularly at higher diversity levels. We conducted a meta-analysis on 2,753 studies in 48 articles published over the last 53 years to test: if biological N2 fixation (BNF) supplies adequate nitrogen (N) for plant growth relative to synthetic fertilizers; how crop physiological traits affect legume-grass symbiosis; and, how cultural practices affect BNF over a range of soils and climates overtime (in polycultures versus sole grasslands). Globally, net primary productivity (NPP; total aboveground production response of grass and legume in higher-diversity treatments) increased 44% via legume associations relative to sole grass controls (including both with and without N fertilizer). Several moderating variables affected NPP including: (i) plant photosynthetic pathway (mixtures of C3 grasses resulted in a 57% increase in NPP, whereas mixtures of C4 grasses resulted in a 31% increase; similarly cool-season legumes increased NPP 52% compared to a 27% increase for warm-season legumes relative to grasslands without diversity); (ii) legume life cycle [NPP response for perennial legume mixtures was 50% greater than sole grass controls, followed by a 28% increase for biennial, and a 0% increase for annual legumes)]; and, (iii) species richness (one leguminous species in a grassland agroecosystem resulted in 52% increase in NPP, whereas >2 legumes resulted in only 6% increases). Temporal and spatial effect sizes also influenced facilitation, considering facilitation was greatest (114% change) in Mediterranean climates followed by oceanic (84%), and tropical savanna (65%) environments; conversely, semiarid and subarctic systems had lowest Rhizobium-induced changes (5 and 0% change, respectively). Facilitation of grass production by legumes was also affected by soil texture. For example, a 122% NPP increase was observed in silt clay soils compared to 14% for silt loam soils. Niche complementarity effects were greatest prior to 1971 (61% change), compared to recent studies (2011-2016; -7% change), likely owing to reduced global sulfur deposition and increased ambient temperatures overtime. These historical trends suggest potential for legume intercrops to displace inorganic-N fertilizer and sustainably intensify global NPP. Results herein provide a framework for ecologists and agronomists to improve crop diversification systems, refine research goals, and heighten BNF capacities in agro-grasslands.


Subject(s)
Biodiversity , Crop Production , Grassland , Crop Production/statistics & numerical data , Fabaceae/physiology , Fertilizers , Nitrogen Fixation , Photosynthesis , Plant Physiological Phenomena , Poaceae/physiology , Symbiosis
4.
Environ Pollut ; 226: 104-117, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28411495

ABSTRACT

We quantitatively evaluated the effects of elevated O3 on arbuscular mycorrhiza (AM) formation and on AM role in promoting plant growth in regard to several moderating variables (O3 levels, O3 exposure duration, plant types, AM fungi family, and additional stress) by means of meta-analysis of published data. The analysis consisted of 117 trials representing 20 peer-reviewed articles and 16 unpublished trials. Relative to non-mycorrhizal controls, AM inoculation did not significantly alter plant growth (shoot biomass, root biomass, total biomass and plant height) when O3 concentration was less than 80 ppb, but at concentrations above 80 ppb symbiosis was associated with increases of 68% in shoot biomass and 131% in root biomass. AM effects on plant growth were affected by the duration of O3 exposure but did not differ much with AM fungi taxa or plant type. AM symbiosis has also led to higher yields under O3 stress, relative to the non-mycorrhizal plants, and the AM effects have been more pronounced as O3 concentration increases. As with biomass, AM effects on yield have been affected by the duration of O3 exposure, with the greatest increase (100%) occurring at 61-90 d. AM-induced promotion of yield differed with fungal species but not with plant type or other abiotic stress. Colonization of roots by AM fungi has been negatively affected by elevated O3 compared to ambient O3; total mycorrhizal colonization rate (MCR), arbuscular MCR, vesicular MCR and hyphal coil MCR declined as O3 levels rose. AM colonization rates were affected by duration of O3 exposure, plant type, AM fungal taxa and other concurrent stresses in most cases. The analysis showed that AM inoculation has the potential to ameliorate detrimental effects of elevated O3 on plant growth and productivity, despite colonization rates being negatively affected by elevated O3.


Subject(s)
Air Pollutants/toxicity , Mycorrhizae/drug effects , Ozone/toxicity , Air Pollutants/analysis , Biomass , Hyphae , Ozone/analysis , Plant Development , Plant Roots/drug effects , Plants , Symbiosis
5.
Plant Biotechnol J ; 15(2): 162-173, 2017 02.
Article in English | MEDLINE | ID: mdl-27383431

ABSTRACT

Cation/proton antiporter 1 (CPA1) genes encode cellular Na+ /H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over-expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta-analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+ , root K+ /Na+ , total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1-induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance.


Subject(s)
Antiporters/genetics , Salt Tolerance/drug effects , Salt-Tolerant Plants/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Antiporters/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protons , Salt-Tolerant Plants/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics
6.
Front Plant Sci ; 7: 1254, 2016.
Article in English | MEDLINE | ID: mdl-27617017

ABSTRACT

Anaerobic soil disinfestation (ASD) is a proven but relatively new strategy to control soil borne pests of horticultural crops through anaerobic decomposition of organic soil amendments. The ASD technique has primarily been used to control soil borne pathogens; however, this technique has also shown potential to control plant parasitic nematodes and weeds. ASD can utilize a broad range of carbon (C) amendments and optimization may improve efficacy across environments. In this context, a meta-analysis using a random-effects model was conducted to determine effect sizes of the ASD effect on soil borne pathogens (533 studies), plant parasitic nematodes (91 studies), and weeds (88 studies) compared with unamended controls. Yield response to ASD was evaluated (123 studies) compared to unamended and fumigated controls. We also examined moderator variables for environmental conditions and amendments to explore the impact of these moderators on ASD effectiveness on pests and yield. Across all pathogen types with the exception of Sclerotinia spp., ASD studies show suppression of bacterial, oomycete and fungal pathogens (59 to 94%). Pathogen suppression was effective under all environmental conditions (50 to 94%) and amendment types (53 to 97%), except when amendments were applied at rates less than 0.3 kg m(-2). The ASD effect ranged from 15 to 56% for nematode suppression and 32 to 81% for weed suppression, but these differences were not significant. Significant nematode moderators included study type, soil type, sampling depth, incubation period, and use of mixed amendments. Weed suppression due to ASD showed significant heterogeneity for all environmental conditions, confirming that these studies do not share a common effect size. Total crop yield was not reduced by ASD when compared to a fumigant control and yield was significantly higher (30%) compared to an unamended control, suggesting ASD as a feasible option to maintain yield without chemical soil fumigants. We conclude ASD is effective against soil borne pathogens and while not conclusive due to a limited number of studies, we expect the same for nematodes and weeds given observed effect sizes. Findings should assist researchers in exploring ASD efficacy in particular environmental conditions and allow for development of standard treatment protocols.

7.
Front Plant Sci ; 7: 1084, 2016.
Article in English | MEDLINE | ID: mdl-27524989

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

8.
Mycorrhiza ; 25(1): 13-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24831020

ABSTRACT

Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants not given anything at inoculation to control for associated soil organisms. The AM effect has been much greater when AM plants were larger or had more phosphorus than NM controls. These findings should assist in further investigations of predictions and mechanisms of the AM influence on host g s .


Subject(s)
Mycorrhizae/physiology , Plant Roots/microbiology , Plant Stomata/metabolism , Symbiosis , Water/metabolism , Droughts , Phosphorus/metabolism
9.
Front Plant Sci ; 5: 562, 2014.
Article in English | MEDLINE | ID: mdl-25368626

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na(+) toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K(+), increasing root and shoot K(+) concentrations by an average of 47 and 42%, respectively, and root and shoot K(+)/Na(+) ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl(-) concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca(++) concentration and root concentrations of Na(+), Mg(++) and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K(+)/Na(+) ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K(+)/Na(+) ratio showed a positive response to root colonization, and root K(+)/Na(+) ratio a negative response to time of exposure to NaCl.

10.
Mycorrhiza ; 18(3): 115-21, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18228050

ABSTRACT

Stomatal conductance (gs) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g (s), to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (Delta Psi leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases gs in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with gs to maintain Delta Psi leaf or whether Delta Psi leaf differs when gs differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased gs relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with gs (positive correlation of gs and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher gs of unstressed AM plants relative to non-AM plants. Consequently, Delta Psi leaf did tend to be higher in AM leaves. A trend toward slightly higher Delta Psi leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher Delta Psi leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.


Subject(s)
Cucurbita/microbiology , Mycorrhizae/physiology , Water/metabolism , Cucurbita/physiology , Membrane Potentials , Plant Leaves/physiology , Plant Roots/microbiology , Plant Stomata/physiology , Plant Transpiration
11.
J Plant Physiol ; 164(10): 1289-99, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17189660

ABSTRACT

In prior studies we learned that colonization of soil can be as important as colonization of roots in determining mycorrhizal influence on the water relations of host plants. Here we use a path analysis modeling approach to test (a) whether quantity of hyphae in soil contributes to variations in stomatal behavior and soil drying, and (b) whether soil colonization or root colonization has a stronger influence on these stomatal and soil drying responses. Experiments were performed on Sorghum bicolor and Cucurbita pepo, with soils and roots colonized by a mixture of Glomus intraradices and Gigaspora margarita. Soil colonization generally made more significant contributions to stomatal conductance than did root colonization. Soil colonization did not make significant direct contributions to soil water potential measures (soil water potential at stomatal closure or soil drying rate), whereas root colonization did contribute a potentially important path to each. The findings further support a role for mycorrhization of the soil itself in contributing to the regulation of stomatal behavior of host plants.


Subject(s)
Cucurbita/microbiology , Plant Leaves/physiology , Plant Roots/microbiology , Soil Microbiology , Sorghum/microbiology , Mycorrhizae , Signal Transduction , Soil/analysis , Water/chemistry
12.
J Plant Physiol ; 163(5): 517-28, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16473656

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.


Subject(s)
Mycorrhizae/physiology , Sorghum/physiology , Symbiosis/physiology , Biomass , Osmotic Pressure , Plant Leaves/growth & development , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/physiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Plant Shoots/physiology , Sodium Chloride/metabolism , Soil/analysis , Sorghum/growth & development , Sorghum/microbiology , Water/metabolism
13.
Mycorrhiza ; 14(2): 85-92, 2004 Apr.
Article in English | MEDLINE | ID: mdl-12743838

ABSTRACT

Colonization of roots and soil by arbuscular mycorrhizal (AM) fungi sometimes promotes stomatal conductance (gs) of the host plant, but scientists have had difficulty predicting or manipulating the response. Our objective was to test whether the magnitude of AM influence on gs is related to environmental conditions: irradiance, air temperature or leaf temperature. Stomatal conductances of two groups of uncolonized sorghum plants were compared to gs of plants colonized by Glomus intraradices (Gi) or Gigaspora margarita (Gm) in 31 morning and afternoon periods under naturally varying greenhouse conditions. Stomatal conductance of Gi and Gm plants was often markedly higher than gs of similarly sized nonAM plants. AM promotion of gs was minimal at the lowest irradiances and lowest air and leaf temperatures, but was substantial at intermediate irradiance and temperatures. AM promotion was again low or absent at the highest irradiances and temperatures. Magnitude of AM promotion of gs was not a function of absolute gs. Promotion of gs by Gi and Gm was remarkably similar. Differing phosphorus fertilization did not affect gs.


Subject(s)
Mycorrhizae/physiology , Plant Transpiration/physiology , Sorghum/microbiology , Fungi/physiology , Plant Leaves/physiology , Sorghum/physiology , Sunlight , Temperature
14.
J Plant Physiol ; 160(10): 1147-56, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14610883

ABSTRACT

Mycorrhizal symbiosis can modify plant response to drying soil, but little is known about the relative contribution of soil vs. root hyphal colonization to drought resistance of mycorrhizal plants. Foliar dehydration tolerance, characterized as leaf and soil water potential at the end of a lethal drying episode, was measured in bean plants (Phaseolus vulgaris) colonized by Glomus intraradices or by a mix of arbuscular mycorrhizal fungi collected from a semi-arid grassland. Path analysis modeling was used to evaluate how colonization rates and other variables affected these lethal values. Of several plant and soil characteristics tested, variation in dehydration tolerance was best explained by soil hyphal density. Soil hyphal colonization had larger direct and total effects on both lethal leaf water potential and soil water potential than did root hyphal colonization, root density, soil aggregation, soil glomalin concentration, leaf phosphorus concentration or leaf osmotic potential. Plants colonized by the semi-arid mix of mycorrhizal fungi had lower lethal leaf water potential and soil water potential than plants colonized by G. intraradices. Our findings support the assertion that external, soil hyphae may play an important role in mycorrhizal influence on the water relations of host plants.


Subject(s)
Mycorrhizae/metabolism , Phaseolus/metabolism , Phaseolus/microbiology , Disasters , Models, Biological , Plant Roots/metabolism , Plant Roots/microbiology , Soil Microbiology , Species Specificity , Symbiosis , Water/metabolism
15.
Funct Plant Biol ; 29(8): 965-974, 2002 Aug.
Article in English | MEDLINE | ID: mdl-32689547

ABSTRACT

Changes in the concentration of free and conjugated ABA, zeatin riboside (ZR), and IAA in response to Bradyrhizobium inoculation and subsequent nodulation were monitored in xylem sap, phloem sap, and leaves of soybean [Glycine max (L.) Merr. cv. Williams 82] and its hypernodulating mutant, NOD1-3. In this study, pre-inoculation concentrations of phloem and xylem sap ABA and ZR were lower in NOD1-3 than in Williams 82, a difference that was accentuated in phloem after inoculation. The concentration of xylem ABA increased within 6h of inoculation, while the concentration of phloem and leaf ABA did not change until 48-96 h after inoculation. Leaf uptake of [3H]ABA and distribution to phloem sap was greater in Williams 82 than in NOD1-3 during 48-72h after inoculation. Inoculation resulted in similar increases in phloem and leaf IAA concentrations in both cultivars. While inoculation increased xylem sap ZR in both lines, the concentration of ZR increased much earlier in NOD1-3. Of particular interest is that ratios between hormones were altered during nodulation. Leaf and phloem ABA/IAA ratios were higher in Williams 82 than in the hypernod mutant, while the phloem IAA/ZR was greater from inoculation until nodulation in the NOD1-3 hypernod mutant. The xylem ABA/ZR ratio, as well as phloem ABA/ZR ratio, decreased in Williams 82 following inoculation, and leaf ABA concentration was elevated. The most noteworthy results of this study, therefore, came from an examination of the ratios between hormones in xylem and phloem sap, and the demonstration that hormone transport may play an important role in autoregulation of root nodulation.

16.
New Phytol ; 145(3): 483-500, 2000 Mar.
Article in English | MEDLINE | ID: mdl-33862903

ABSTRACT

Recent research in whole-plant stomatal physiology, conducted largely with potted plants in controlled environments, suggests that stomatal conductance (gs ) might be more closely linked to plant chemical variables than to hydraulic variables. To test this in a field situation, seasonal gs was examined in relation to a number of plant and environmental variables in 11 temperate, deciduous forest tree species. Stomatal conductance was generally better correlated with environmental variables (air temperature, vapor pressure deficit, PPFD) than with plant variables, and slightly better correlated with plant hydraulic variables (shoot water and osmotic potentials) than with plant chemical variables (xylem sap ABA concentration, xylem sap pH). We examined a model, developed previously for maize, which describes regulation of gs by xylem sap ABA concentration with leaf water status acting to modify stomatal sensitivity to the ABA signal. This model explained slightly more variation in seasonal gs in the forest trees than did single plant variables but not more variation than most single environmental variables. Response surface models, especially those incorporating environmental variables, were more consistently successful at explaining gs across species.

17.
New Phytol ; 115(2): 285-295, 1990 Jun.
Article in English | MEDLINE | ID: mdl-33873949

ABSTRACT

Using psychrometric pressure-volume analysis, root water relations following drought were characterized in Rosa hybrida L. plants colonized by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith. Measurements were also made on uncolonized plants of similar size and adequate phosphorus nutrition. Under well-watered conditions mycorrhizal colonization resulted in lower solute concentrations in root symplasm, and hence lower root turgors. Following drought, however, mycorrhizal roots maintained greater turgor across a range of tissue hydration. This effect was apparently not due to increased osmotic adjustment (osmotic potentials at full turgor were similar in mycorrhizal and non-mycorrhizal roots after drought) or to altered elasticity but to an increased partitioning of water into the symplast. Symplast osmolality at full turgor was similar in mycorrhizal and non-mycorrhizal roots but, because of their higher symplastic water percentages, mycorrhizal roots contained a greater amount of osmotic (symplastic) solutes. Drought-induced changes in osmotic potential were observed only in mycorrhizal roots, where a 0.4 MPa decrease (relative to well-watered controls) brought the full turgor osmotic potential of mycorrhizal roots to the same level as that of non-mycorrhizal roots under either watering treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...