Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(5): e11441, 2024 May.
Article in English | MEDLINE | ID: mdl-38799400

ABSTRACT

Phenological shifts due to changing climate are often highly species and context specific. Land-use practices such as mowing or grazing directly affect the phenology of grassland species, but it is unclear if plants are similarly affected by climate change in differently managed grassland systems such as meadows and pastures. Functional traits have a high potential to explain phenological shifts and might help to understand species-specific and land-use-specific phenological responses to changes in climate. In the large-scale field experiment Global Change Experimental Facility (GCEF), we monitored the first flowering day, last flowering day, flowering duration, and day of peak flowering, of 17 herbaceous grassland species under ambient and future climate conditions, comparing meadows and pastures. Both climate and land use impacted the flowering phenology of plant species in species-specific ways. We did not find evidence for interacting effects of climate and land-use type on plant phenology. However, the data indicate that microclimatic and microsite conditions on meadows and pastures were differently affected by future climate, making differential effects on meadows and pastures likely. Functional traits, including the phenological niche and grassland utilization indicator values, explained species-specific phenological climate responses. Late flowering species and species with a low mowing tolerance advanced their flowering more strongly under future climate. Long flowering species and species following an acquisitive strategy (high specific leaf area, high mowing tolerance, and high forage value) advanced their flowering end more strongly and thus more strongly shortened their flowering under future climate. We associated these trait-response relationships primarily with a phenological drought escape during summer. Our results provide novel insights on how climate and land use impact the flowering phenology of grassland species and we highlight the role of functional traits in mediating phenological responses to climate.

2.
Glob Chang Biol ; 30(3): e17252, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501719

ABSTRACT

The synthesis of a large body of evidence from field experiments suggests more diverse plant communities are more productive as well as more resistant to the effects of climatic extremes like drought. However, this view is strongly based on data from grasslands due to the limited empirical evidence from tree diversity experiments. Here we report on the relationship between tree diversity and productivity over 10 years in a field experiment established in 2005 that was then affected by the 2018 mega-drought in central Europe. Across a number of years, tree species diversity and productivity were significantly positively related; however, the slope switched to negative in the year of the drought. Net diversity effects increased through time, with complementarity effects making greater contributions to the net diversity effect than selection effects. Complementarity effects were clearly positive in three- and five-species mixtures before the drought (2012-2016) but were found to decrease in the year of the drought. Selection effects were clearly positive in 2016 and remained positive in the drought year 2018 in two-, three-, and five-species mixtures. The survival of Norway spruce (Picea abies) plummeted in response to the drought, and a negative relationship between species diversity and spruce survival was found. Taken together, our findings suggest that tree diversity per se may not buffer communities against the impacts of extreme drought and that tree species composition and the drought tolerance of tree species (i.e., species identity) will be important determinants of community productivity as the prevalence of drought increases.


Subject(s)
Picea , Trees , Trees/physiology , Droughts , Forests , Europe , Picea/physiology
3.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
4.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38190514

ABSTRACT

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Subject(s)
Droughts , Ecosystem , Grassland , Carbon Cycle , Climate Change , Receptor Protein-Tyrosine Kinases
5.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302436

ABSTRACT

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Subject(s)
Ecosystem , Trees , Trees/chemistry , Plant Leaves , Forests , Tea , Biodiversity , Soil/chemistry
6.
PLoS One ; 17(11): e0276789, 2022.
Article in English | MEDLINE | ID: mdl-36346799

ABSTRACT

Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions.


Subject(s)
Silene , Humans , Biomass , Plants , Nutrients , Nitrogen , Grassland , Ecosystem
7.
Ecol Evol ; 12(1): e8501, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127026

ABSTRACT

Climate change has the potential to alter plant reproductive success directly and indirectly through disruptions in animal pollination. Climate models project altered seasonal precipitation patterns, and thus, the effects of climate change on available resources and pollination services will depend on the season. Plants have evolved reproductive strategies to so they are not limited by either pollen or water availability in their reproductive success, and therefore, we expect that the disruption of climate change might cause plants to be more pollen limited in seasons that become wetter than they were historically. In this study, we conducted a pollen supplementation experiment within the Global Change Experiment Facility (GCEF) in Central Germany. The GCEF experimentally manipulates future climate based on a realistic scenario of climate change for the region (drier summers and wetter springs and falls) in a native grassland ecosystem. We quantified seed production of two perennial species Dianthus carthusianorum and Scabiosa ochroleuca in response to pollination treatments (control, supplement), climate treatments (ambient and future) and season (summer and fall). Dianthus carthusianorum produced more seeds in future climate conditions independent of the season, but only when given supplemental pollen. Both species showed an increased reproduction in summer compared with the fall. We did not find evidence for our specific expectation of higher pollen limitation in the future climate and fall season (i.e., no three-way interaction pollination × season × climate), which might be explained by the high-drought tolerance and generalized pollination of our focal plant species. We conclude that plant reproductive success has the potential to change with changing climates and that this change will depend on how pollinator services change in the future. We offer many suggestions for future studies that are necessary to understand the context dependence and underlying mechanisms of plant reproductive responses to climate.

8.
Life (Basel) ; 11(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34685452

ABSTRACT

Symbiotic foliar fungal endophytes can have beneficial effects on host trees and might alleviate climate-induced stressors. Whether and how the community of foliar endophytes is dependent on the tree neighborhood is still under debate with contradicting results from different tree diversity experiments. Here, we present our finding regarding the effect of the tree neighborhood from the temperate, densely planted and 12-years-old Kreinitz tree diversity experiment. We used linear models, redundancy analysis, Procrustes analysis and Holm-corrected multiple t-tests to quantify the effects of the plot-level tree neighborhood on the diversity and composition of foliar fungal endophytes in Fagus sylvatica, Quercus petraea and Picea abies. Against our expectations, we did not find an effect of tree diversity on endophyte diversity. Endophyte composition, however, was driven by the identity of the host species. Thirteen endophytes where overabundant in tree species mixtures, which might indicate frequent spillover or positive interactions between foliar endophytes. The independence of the diversity of endophytes from the diversity of tree species might be attributed to the small plot size and the high density of tree individuals. However, the mechanistic causes for these cryptic relationships still remain to be uncovered.

9.
Nat Commun ; 12(1): 2489, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941779

ABSTRACT

Mitigating and adapting to climate change requires an understanding of the magnitude and nature by which climate change will influence the diversity of plants across the world's ecosystems. Experiments can causally link precipitation change to plant diversity change, however, these experiments vary in their methods and in the diversity metrics reported, making synthesis elusive. Here, we explicitly account for a number of potentially confounding variables, including spatial grain, treatment magnitude and direction and background climatic conditions, to synthesize data across 72 precipitation manipulation experiments. We find that the effects of treatments with higher magnitude of precipitation manipulation on plant diversity are strongest at the smallest spatial scale, and in drier environments. Our synthesis emphasizes that quantifying differential responses of ecosystems requires explicit consideration of spatial grain and the magnitude of experimental manipulation. Given that diversity provides essential ecosystem services, especially in dry and semi-dry areas, our finding that these dry ecosystems are particular sensitive to projected changes in precipitation has important implications for their conservation and management.


Subject(s)
Adaptation, Physiological/physiology , Climate Change , Climate , Plants/metabolism , Rain , Biodiversity , Ecosystem , Humidity/adverse effects , Soil/chemistry
10.
Ecol Evol ; 10(18): 10139-10149, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005370

ABSTRACT

Land management is known to have consequences for biodiversity; however, our synthetic understanding of its effects is limited due to highly variable results across studies, which vary in the focal taxa and spatial grain considered, as well as the response variables reported. Such synthetic knowledge is necessary for management of agroecosystems for high diversity and function.To fill this knowledge gap, we investigated the importance of scale-dependent effects of land management (LM) (pastures vs. meadows), on plant and soil microbe diversity (fungi and bacteria) across 5 study sites in Central Germany. Analyses included diversity partitioning of species richness and related biodiversity components (i.e., density of individuals, species-abundance distribution, and spatial aggregation) at two spatial grains (α- and γ-scale, 1 m2 and 16 km2, respectively).Our results show scale-dependent patterns in response to LM to be the norm rather than the exception and highlight the importance of measuring species richness and its underlying components at multiple spatial grains.Our outcomes provide new insight to the complexity of scale-dependent responses within and across taxonomic groups. They suggest that, despite close associations between taxa, LM responses are not easily extrapolated across multiple spatial grains and taxa. Responses of biodiversity to LM are often driven by changes to evenness and spatial aggregation, rather than by changes in individual density. High-site specificity of LM effects might be due to a variety of context-specific factors, such as historic land management, identity of grazers, and grazing regime. Synthesis and applications: Our results suggest that links between taxa are not necessarily strong enough to allow for generalization of biodiversity patterns. These findings highlight the importance of considering multiple taxa and spatial grains when investigating LM responses, while promoting management practices that do the same and are tailored to local and regional conditions.

11.
Ecol Evol ; 10(12): 5506-5516, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607170

ABSTRACT

Pathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States. Despite that pathogens are known to respond positively to increases in their host abundances in other systems, we found no relationship between host abundance and either pathogen diversity or infection. Native and exotic plants did not differ in their infection levels, but exotic plants hosted a more generalist pathogen community compared to native plants. There was no phylogenetic signal across plants in pathogen diversity or infection. The lack of evidence for a role of abundance, origin, and evolutionary relationships in shaping patterns of pathogens in our study might be explained by the high generalization and global distributions of our focal pathogen community, as well as the high diversity of our plant host community. In general, the community-level patterns of aboveground pathogen infections have received less attention than belowground pathogens, and our results suggest that their patterns might not be explained by the same drivers.

12.
Ecol Lett ; 23(10): 1442-1450, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32567139

ABSTRACT

Seed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above-ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.


Subject(s)
Biodiversity , Ecosystem , Biomass
13.
Glob Chang Biol ; 26(2): 325-327, 2020 02.
Article in English | MEDLINE | ID: mdl-31412141

ABSTRACT

Experiments that alter local climate and measure community- and ecosystem-level responses are an important tool for understanding how future ecosystems will respond to climate change. Here, we synthesized data from 76 studies that manipulated climate and measured plant community responses, and found that most climate change experiments do not correspond to model-projected climate scenarios for their respective regions. This mismatch constrains our ability to predict responses of plant biodiversity and ecosystem functions to climate change, and we conclude with suggestions for a way forward. See also the Commentary on this article by Muller et al., 26, e4-e5 and De Boeck et al.,26, e6-e7.


Subject(s)
Climate Change , Ecosystem , Biodiversity , Forecasting , Plants
14.
Glob Chang Biol ; 26(2): 328-329, 2020 02.
Article in English | MEDLINE | ID: mdl-31721385

ABSTRACT

In their response to our letter, De Boek et al. (2019) and Muller, Ballhausen, Lakovic, and Rillig (2019) argue that our conclusion that we need more realistic climate change experiments is too "gloomy" and that we need a plurality of experiments including extremes and multifactorial approaches. We agree that a diversity of experimental approaches is required in order to anticipate the consequences for plant communities of alternative future environmental conditions. However, we argue that "realistic" experiments are underrepresented in the portfolio of previous experiments, and are urgently needed to understand how species communities of the future will look like and how they will function. This article is a response to Muller et al., 26, e4-e5 and De Boeck et al., 26, e6-e7.


Subject(s)
Climate Change , Ecosystem , Plants
15.
Ecol Evol ; 9(21): 12113-12127, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31832147

ABSTRACT

Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity-ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above- and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small-scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12-year-old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.

16.
Plants (Basel) ; 8(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779143

ABSTRACT

The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s. l., with exclusion of above- and belowground insect herbivores. We monitored population dynamics of the invader and changes in the diversity and functioning of the plant community across eight years. Above- and belowground insects favoured the establishment of the invasive plant species and thereby increased biomass and decreased diversity of the plant community. Effects of invertebrate herbivores on population dynamics of S. canadensis appeared after six years and increased over time, suggesting that long-term studies are needed to understand invasion dynamics and consequences for plant community structure. We suggest that the release from co-evolved trophic linkages is of importance not only for the effect of invasive species on ecosystems, but also for the functioning of novel species assemblages arising from climate change.

17.
Ecol Evol ; 9(19): 11254-11265, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31641470

ABSTRACT

For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships.

19.
Sci Rep ; 9(1): 639, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679568

ABSTRACT

Anthropogenic global change alters the activity and functional composition of soil communities that are responsible for crucial ecosystem functions and services. Two of the most pervasive global change drivers are drought and nutrient enrichment. However, the responses of soil organisms to interacting global change drivers remain widely unknown. We tested the interactive effects of extreme drought and fertilization on soil biota ranging from microbes to invertebrates across seasons. We expected drought to reduce the activity of soil organisms and fertilization to induce positive bottom-up effects via increased plant productivity. Furthermore, we hypothesized fertilization to reinforce drought effects through enhanced plant growth, resulting in even drier soil conditions. Our results revealed that drought had detrimental effects on soil invertebrate feeding activity and simplified nematode community structure, whereas soil microbial activity and biomass were unaffected. Microbial biomass increased in response to fertilization, whereas invertebrate feeding activity substantially declined. Notably, these effects were consistent across seasons. The dissimilar responses suggest that soil biota differ vastly in their vulnerability to global change drivers. Thus, important ecosystem processes like decomposition and nutrient cycling, which are driven by the interdependent activity of soil microorganisms and invertebrates, may be disrupted under future conditions.


Subject(s)
Droughts , Soil , Animals , Biomass , Ecosystem , Invertebrates , Seasons , Soil Microbiology
20.
Sci Rep ; 8(1): 4399, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29520066

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...