Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Mol Plant ; 17(1): 75-91, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38102831

ABSTRACT

People have grafted plants since antiquity for propagation, to increase yields, and to improve stress tolerance. This cutting and joining of tissues activates an incredible regenerative ability as different plants fuse and grow as one. For over a hundred years, people have studied the scientific basis for how plants graft. Today, new techniques and a deepening knowledge of the molecular basis for graft formation have allowed a range of previously ungraftable combinations to emerge. Here, we review recent developments in our understanding of graft formation, including the attachment and vascular formation steps. We analyze why plants graft and how biotic and abiotic factors influence successful grafting. We also discuss the ability and inability of plants to graft, and how grafting has transformed both horticulture and fundamental plant science. As our knowledge about plant grafting improves, new combinations and techniques will emerge to allow an expanded use of grafting for horticultural applications and to address fundamental research questions.


Subject(s)
Agriculture , Plants , Agriculture/methods
3.
Curr Biol ; 33(9): 1716-1727.e3, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37071995

ABSTRACT

The postembryonic formation of lateral roots (LRs) starts in internal root tissue, the pericycle. An important question of LR development is how the connection of the primary root vasculature with that of the emerging LR is established and whether the pericycle and/or other cell types direct this process. Here, using clonal analysis and time-lapse experiments, we show that both the procambium and pericycle of the primary root (PR) affect the LR vascular connectivity in a coordinated manner. We show that during LR formation, procambial derivates switch their identity and become precursors of xylem cells. These cells, together with the pericycle-origin xylem, participate in the formation of what we call a "xylem bridge" (XB), which establishes the xylem connection between the PR and the nascent LR. If the parental protoxylem cell fails to differentiate, XB is still sometimes formed but via a connection with metaxylem cells, highlighting that this process has some plasticity. Using mutant analyses, we show that the early specification of XB cells is determined by CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors (TFs). Subsequent XB cell differentiation is marked by the deposition of secondary cell walls (SCWs) in spiral and reticulate/scalariform patterns, which is dependent on the VASCULAR-RELATED NAC-DOMAIN (VND) TFs. XB elements were also observed in Solanum lycopersicum, suggesting that this mechanism may be more widely conserved in plants. Together, our results suggest that plants maintain vascular procambium activity, which safeguards the functionality of newly established lateral organs by assuring the continuity of the xylem strands throughout the root system.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Plant Roots , Xylem , Cell Differentiation , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism
4.
New Phytol ; 236(1): 195-209, 2022 10.
Article in English | MEDLINE | ID: mdl-35746821

ABSTRACT

Salinity is detrimental to plants and developmental adjustments limiting salt uptake and transport is therefore important for acclimation to high salt. These parameters may be influenced by xylem morphology, however how plant root xylem development is affected by salt stress remains unclear. Using molecular and genetic techniques and detailed phenotypic analyses, we demonstrate that salt causes distinct effects on Arabidopsis seedling root xylem and reveal underlying molecular mechanisms. Salinity causes intermittent inhibition of protoxylem cell differentiation, generating protoxylem gaps, in Arabidopsis and several other eudicot seedlings. The extent of protoxylem gaps in seedlings positively correlates with salt tolerance. Reduced gibberellin signalling is required for protoxylem gap formation. Mutant analyses reveal that the xylem differentiation regulator VASCULAR RELATED NAC DOMAIN 6 (VND6), along with secondary cell wall producing and cell wall modifying enzymes, including EXPANSIN A1 (EXP1), are involved in protoxylem gap formation, in a DELLA-dependent manner. Salt stress is likely to reduce levels of bioactive gibberellins, stabilising DELLAs, which in turn activates multiple factors modifying protoxylem differentiation. Salt stress impacts seedling survival and formation of protoxylem gaps may be a measure to enhance salt tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gibberellins/pharmacology , Salinity , Salt Tolerance , Seedlings/metabolism
6.
Curr Biol ; 31(14): 3153-3161.e5, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34043949

ABSTRACT

Plants display remarkable abilities to adjust growth and development to environmental conditions, such as the amount of available water. This developmental plasticity is apparent not only in root and shoot growth rates, but also in tissue patterning and cell morphology.1,2 We have previously shown that in response to limited water availability, Arabidopsis thaliana root displays changes in xylem morphology, mediated by the non-cell-autonomous action of abscisic acid, ABA.2 Here, we show, through analyses of ABA response reporters and tissue-specific suppression of ABA signaling, that xylem cells themselves act as primary signaling centers governing both xylem cell fate and xylem differentiation rate, revealing the cell-autonomous control of multiple aspects of xylem development by ABA. ABA rapidly activates the expression of genes encoding VASCULAR-RELATED NAC DOMAIN (VND) transcription factors. Molecular and genetic analyses revealed that the two ABA-mediated xylem developmental changes are regulated by distinct members of this transcription factor family, with VND2 and VND3 promoting differentiation rate of metaxylem cells, while VND7 promotes the conversion of metaxylem toward protoxylem morphology. This phenomenon shows how different aspects of developmental plasticity can be interlinked, yet genetically separable. Moreover, similarities in phenotypic and molecular responses to ABA in diverse species indicate evolutionary conservation of the ABA-xylem development regulatory network among eudicots. Hence, this study gives molecular insights into how environmental stress modifies plant vascular anatomy and has potential relevance for water use optimization and adaptation to drought conditions.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins , Arabidopsis , Transcription Factors , Xylem , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Differentiation , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism , Xylem/growth & development
7.
Front Plant Sci ; 11: 570, 2020.
Article in English | MEDLINE | ID: mdl-32499804

ABSTRACT

Periods of drought, that threaten crop production, are expected to become more prominent in large parts of the world, making it necessary to explore all aspects of plant growth and development, to breed, modify and select crops adapted to such conditions. One such aspect is the xylem, where influencing the size and number of the water-transporting xylem vessels, may impact on hydraulic conductance and drought tolerance. Here, we focus on how plants adjust their root xylem as a response to reduced water availability. While xylem response has been observed in a wide array of species, most of our knowledge on the molecular mechanisms underlying xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When grown under water limiting conditions, Arabidopsis rapidly adjusts its development to produce more xylem strands with altered identity in an abscisic acid (ABA) dependent manner. Other hormones such as auxin and cytokinin are essential for vascular patterning and differentiation. Their balance can be perturbed by stress, as evidenced by the effects of enhanced jasmonic acid signaling, which results in similar xylem developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids and other signaling molecules involved in drought tolerance can also impact xylem development. Hence, a multitude of signals affect root xylem properties and, potentially, influence survival under water limiting conditions. Here, we review the likely entangled signals that govern root vascular development, and discuss the importance of taking root anatomical traits into account when breeding crops for enhanced resilience toward changes in water availability.

8.
Front Plant Sci ; 9: 1410, 2018.
Article in English | MEDLINE | ID: mdl-30319672

ABSTRACT

Roots attach plants to the ground and ensure efficient and selective uptake of water and nutrients. These functions are facilitated by the morphological and anatomical structures of the root, formed by the activity of the root apical meristem (RAM) and consecutive patterning and differentiation of specific tissues with distinct functions. Despite the importance of this plant organ, its evolutionary history is not clear, but fossils suggest that roots evolved at least twice, in the lycophyte (clubmosses and their allies) and in the euphyllophyte (ferns and seed plants) lineages. Both lycophyte and euphyllophyte roots grow indeterminately by the action of an apical meristem, which is protected by a root cap. They produce root hairs, and in most species the vascular stele is guarded by a specialized endodermal cell layer. Hence, most of these traits must have evolved independently in these lineages. This raises the question if the development of these apparently analogous tissues is regulated by distinct or homologous genes, independently recruited from a common ancestor of lycophytes and euphyllophytes. Currently, there are few studies of the genetic and molecular regulation of lycophyte and fern roots. Therefore, in this review, we focus on key regulatory networks that operate in root development in the model angiosperm Arabidopsis. We describe current knowledge of the mechanisms governing RAM maintenance as well as patterning and differentiation of tissues, such as the endodermis and the vasculature, and compare with other species. We discuss the importance of comparative analyses of anatomy and morphology of extant and extinct species, along with analyses of gene regulatory networks and, ultimately, gene function in plants holding key phylogenetic positions to test hypotheses of root evolution.

9.
Sci Signal ; 11(536)2018 06 26.
Article in English | MEDLINE | ID: mdl-29945884

ABSTRACT

Cell walls surround all plant cells, and their composition and structure are modified in a tightly controlled, adaptive manner to meet sometimes opposing functional requirements during growth and development. The plant cell wall integrity (CWI) maintenance mechanism controls these functional modifications, as well as responses to cell wall damage (CWD). We investigated how the CWI system mediates responses to CWD in Arabidopsis thaliana CWD induced by cell wall-degrading enzymes or an inhibitor of cellulose biosynthesis elicited similar, turgor-sensitive stress responses. Phenotypic clustering with 27 genotypes identified a core group of receptor-like kinases (RLKs) and ion channels required for the activation of CWD responses. A genetic analysis showed that the RLK FEI2 and the plasma membrane-localized mechanosensitive Ca2+ channel MCA1 functioned downstream of the RLK THE1 in CWD perception. In contrast, pattern-triggered immunity (PTI) signaling components, including the receptors for plant elicitor peptides (AtPeps) PEPR1 and PEPR2, repressed responses to CWD. CWD induced the expression of PROPEP1 and PROPEP3, which encode the precursors of AtPep1 and AtPep3, and the release of PROPEP3 into the growth medium. Application of AtPep1 and AtPep3 repressed CWD-induced phytohormone accumulation in a concentration-dependent manner. These results suggest that AtPep-mediated signaling suppresses CWD-induced defense responses controlled by the CWI mechanism. This suppression was alleviated when PTI signaling downstream of PEPR1 and PEPR2 was impaired. Defense responses controlled by the CWI maintenance mechanism might thus compensate to some extent for the loss of PTI signaling elements.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Cell Wall/physiology , Osmotic Pressure , Plant Growth Regulators/metabolism , Plant Immunity/immunology , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Wall/immunology , Gene Expression Regulation, Plant , Plant Growth Regulators/analysis , Stress, Physiological
10.
Development ; 145(3)2018 02 05.
Article in English | MEDLINE | ID: mdl-29361572

ABSTRACT

The plant root xylem comprises a specialized tissue for water distribution to the shoot. Despite its importance, its potential morphological plasticity in response to environmental conditions such as limited water availability has not been thoroughly studied. Here, we identify a role for the phytohormone abscisic acid (ABA) for proper xylem development and describe how ABA signalling-mediated effects on core developmental regulators are employed to alter xylem morphology under limited water availability in Arabidopsis Plants with impaired ABA biosynthesis and reduced ABA signalling in the cell layer surrounding the vasculature displayed defects in xylem continuity, suggesting that non-cell autonomous ABA signalling is required for proper xylem development. Conversely, upon external ABA application or under limited water availability, extra xylem strands were formed. The observed xylem developmental alterations were dependent on adequate endodermal ABA signalling, which activated MIR165A. This resulted in increased miR165 levels that repress class III HD-ZIP transcription factors in the stele. We conclude that a pathway known to control core developmental features is employed as a means of modifying plant xylem morphology under conditions of environmental stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , MicroRNAs/metabolism , Plant Growth Regulators/metabolism , Acclimatization , Arabidopsis/genetics , Endoderm/growth & development , Endoderm/metabolism , Genes, Plant , MicroRNAs/genetics , Mutation , Plant Development/genetics , Plant Development/physiology , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Plant/metabolism , Signal Transduction , Water/metabolism , Xylem/growth & development , Xylem/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...