Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 86(2): 199-211, 2006.
Article in English | MEDLINE | ID: mdl-16243414

ABSTRACT

Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment.


Subject(s)
Actinium/analysis , Soil Pollutants, Radioactive/analysis , Models, Theoretical , New Mexico
2.
Radiat Prot Dosimetry ; 101(1-4): 129-32, 2002.
Article in English | MEDLINE | ID: mdl-12382721

ABSTRACT

The feasibility was investigated of a solid-state neutron detector/dosemeter based on single-event upset (SEU) effects in dynamic random-access memories (DRAMs), commonly used in computer memories. Such a device, which uses a neutron converter material to produce a charged particle capable of causing an upset, would be light-weight, low-power, and could be read simply by polling the memory for bit flips. It would have significant advantages over standard solid-state neutron dosemeters which require off-line processing for track etching and analysis. Previous efforts at developing an SEU neutron detector/dosemeter have suffered from poor response, which can be greatly enhanced by selecting a modern high-density DRAM chip for SEU sensitivity and by using a thin 10B film as a converter. Past attempts to use 10B were not successful because the average alpha particle energy was insufficient to penetrate to the sensitive region of the memory. This can be overcome by removing the surface passivation layer before depositing the 10B film or by implanting 10B directly into the chip. Previous experimental data show a 10(3) increase in neutron sensitivity by chips containing borosilicate glass, which could be used in an SEU detector. The results are presented of simulations showing that the absolute efficiency of an SEU neutron dosemeter can be increased by at least a factor of 1000 over earlier designs.


Subject(s)
Neutrons , Radiometry/methods , Computer Storage Devices , Feasibility Studies , Radiometry/instrumentation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...