Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 4(5): 161013, 2017 May.
Article in English | MEDLINE | ID: mdl-28572992

ABSTRACT

The attine ant system is a remarkable example of symbiosis. An antagonistic partner within this system is the fungal parasite Escovopsis, a genus specific to the fungal gardens of the Attini. Escovopsis parasitizes the Leucoagaricus symbiont that leaf-cutting ants (Acromyrmex, Atta) have been farming over the past 8-12 Myr. However, it has been a puzzle how Escovopsis reaches its host. During a seasonal survey of nests of Acromyrmex subterraneus subterraneus in Atlantic rainforest in Brazil, Escovopsis was detected in all the sampled fungal garden waste tips or middens (n = 111). Middens were built strategically; always below the nest entrances. Here, we report the first evidence of a putative mechanism for horizontal transmission of Escovopsis between attine colonies. It is posited that leaf-cutting ants pick up the spores from soil and litter during foraging and vector the mycoparasite between attine colonies. Field and laboratory experiments, using At. laevigata and Ac. subterraneus subterraneus, confirm that Escovopsis spores are phoretic, and have an inbuilt dormancy, broken by the presence of their Leucoagaricus host. However, in the coevolutionary arms race, Atta ants may lose out-despite most species in the genus investing in a more advanced waste disposal system-due to the insanitary habits of their Acromyrmex neighbours.

2.
PLoS One ; 8(12): e82265, 2013.
Article in English | MEDLINE | ID: mdl-24376525

ABSTRACT

BACKGROUND: Symbiotic relationships modulate the evolution of living organisms in all levels of biological organization. A notable example of symbiosis is that of attine ants (Attini; Formicidae: Hymenoptera) and their fungal cultivars (Lepiotaceae and Pterulaceae; Agaricales: Basidiomycota). In recent years, this mutualism has emerged as a model system for studying coevolution, speciation, and multitrophic interactions. Ubiquitous in this ant-fungal symbiosis is the "weedy" fungus Escovopsis (Hypocreales: Ascomycota), known only as a mycoparasite of attine fungal gardens. Despite interest in its biology, ecology and molecular phylogeny--noting, especially, the high genetic diversity encountered--which has led to a steady flow of publications over the past decade, only two species of Escovopsis have formally been described. METHODS AND RESULTS: We sampled from fungal gardens and garden waste (middens) of nests of the leaf-cutting ant genus Acromyrmex in a remnant of subtropical Atlantic rainforest in Minas Gerais, Brazil. In culture, distinct morphotypes of Escovopsis sensu lato were recognized. Using both morphological and molecular analyses, three new species of Escovopsis were identified. These are described and illustrated herein--E. lentecrescens, E. microspora, and E. moelleri--together with a re-description of the genus and the type species, E. weberi. The new genus Escovopsioides is erected for a fourth morphotype. We identify, for the first time, a mechanism for horizontal transmission via middens. CONCLUSIONS: The present study makes a start at assigning names and formal descriptions to these specific fungal parasites of attine nests. Based on the results of this exploratory and geographically-restricted survey, we expect there to be many more species of the genus Escovopsis and its relatives associated with nests of both the lower and higher Attini throughout their neotropical range, as suggested in previous studies.


Subject(s)
Ants/physiology , Fungi/physiology , Nesting Behavior , Plant Leaves/parasitology , Symbiosis , Animals , DNA, Intergenic/genetics , Ecological and Environmental Phenomena , Fungi/classification , Fungi/genetics , Fungi/growth & development , Phylogeny , Spores, Fungal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...