Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5069, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604879

ABSTRACT

X-ray free-electron lasers (FELs) are state-of-the-art scientific tools capable to study matter on the scale of atomic processes. Since the initial operation of X-ray FELs more than a decade ago, several facilities with upgraded performance have been put in operation. Here we present the first lasing results of Athos, the soft X-ray FEL beamline of SwissFEL at the Paul Scherrer Institute in Switzerland. Athos features an undulator layout based on short APPLE-X modules providing full polarisation control, interleaved with small magnetic chicanes. This versatile configuration allows for many operational modes, giving control over many FEL properties. We show, for example, a 35% reduction of the required undulator length to achieve FEL saturation with respect to standard undulator configurations. We also demonstrate the generation of more powerful pulses than the ones obtained in typical undulators. Athos represents a fundamental step forward in the design of FEL facilities, creating opportunities in FEL-based sciences.

2.
Sci Adv ; 9(28): eadg7864, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37436977

ABSTRACT

Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula: see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.

3.
Chimia (Aarau) ; 76(6): 529-537, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-38069722

ABSTRACT

Ultrafast single-particle imaging with intense x-ray pulses from free-electron laser sources provides a new approach for visualizing structure and dynamics on the nanoscale. After a short introduction to the novel free-electron laser sources and methods, we highlight selected applications and discuss how ultrafast imaging flourishes from method development to early applications in physics and biology to opportunities for chemical sciences.

4.
Rev Sci Instrum ; 91(10): 105109, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138597

ABSTRACT

We present an approach to determine the absolute thickness profile of flat liquid jets, which takes advantage of the information of thin film interference combined with light absorption, both captured in a single microscopic image. The feasibility of the proposed method is demonstrated on our compact experimental setup used to generate micrometer thin, free-flowing liquid jet sheets upon collision of two identical laminar cylindrical jets. Stable operation was achieved over several hours of the flat jet in vacuum (10-4 mbar), making the system ideally suitable for soft x-ray photon spectroscopy of liquid solutions. We characterize the flat jet size and thickness generated with two solvents, water and ethanol, employing different flow rates and nozzles of variable sizes. Our results show that a gradient of thickness ranging from a minimal thickness of 2 µm to over 10 µm can be found within the jet surface area. This enables the tunability of the sample thickness in situ, allowing the optimization of the transmitted photon flux for the chosen photon energy and sample. We demonstrate the feasibility of x-ray absorption spectroscopy experiments in transmission mode by measuring at the oxygen K-edge of ethanol. Our characterization method and the description of the experimental setup and its reported performance are expected to expand the range of applications and facilitate the use of flat liquid jets for spectroscopy experiments.

5.
Phys Rev Lett ; 124(11): 113002, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242685

ABSTRACT

Intermolecular processes offer unique decay mechanisms for complex systems to internally relax. Here, we report the observation of an intermolecular Coulombic decay channel in an endohedral fullerene, a holmium nitride complex (Ho_{3}N) embedded within a C_{80} fullerene, between neighboring holmium ions, and between the holmium complex and the carbon cage. By measuring the ions and the electrons in coincidence after XUV photoabsorption, we can isolate the different decay channels, which are found to be more prevalent relative to intra-atomic Auger decay.

6.
J Chem Phys ; 151(10): 104308, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521092

ABSTRACT

We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale.

7.
J Chem Phys ; 151(8): 084314, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31470702

ABSTRACT

Charge transfer (CT) at avoided crossings of excited ionized states of argon dimers is observed using a two-color pump-probe experiment at the free-electron laser in Hamburg (FLASH). The process is initiated by the absorption of three 27-eV-photons from the pump pulse, which leads to the population of Ar2+*-Ar states. Due to nonadiabatic coupling between these one-site doubly ionized states and two-site doubly ionized states of the type Ar+*-Ar+, CT can take place leading to the population of the latter states. The onset of this process is probed by a delayed infrared (800 nm) laser pulse. The latter ionizes the dimers populating repulsive Ar2+ -Ar+ states, which then undergo a Coulomb explosion. From the delay-dependent yields of the obtained Ar2+ and Ar+ ions, the lifetime of the charge-transfer process is extracted. The obtained experimental value of (531 ± 136) fs agrees well with the theoretical value computed from Landau-Zener probabilities.

8.
Rev Sci Instrum ; 90(5): 055103, 2019 May.
Article in English | MEDLINE | ID: mdl-31153288

ABSTRACT

We report on the design and performance of a double-sided coincidence velocity map imaging spectrometer optimized for electron-ion and ion-ion coincidence experiments studying inner-shell photoionization of gas-phase molecules with soft X-ray synchrotron radiation. The apparatus employs two microchannel plate detectors equipped with delay-line anodes for coincident, time- and position-resolved detection of photoelectrons and Auger electrons with kinetic energies up to 300 eV on one side of the spectrometer and photoions up to 25 eV per unit charge on the opposite side. We demonstrate its capabilities by measuring valence photoelectrons and ion spectra of neon and nitrogen and by studying channel-resolved photoelectron and Auger spectra along with fragment-ion momentum correlations for chlorine 2p inner-shell ionization of cis- and trans-1,2-dichloroethene.

9.
J Synchrotron Radiat ; 26(Pt 3): 854-867, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074450

ABSTRACT

A reaction microscope dedicated to multi-particle coincidence spectroscopy on gas-phase samples is installed at beamline FL26 of the free-electron laser FLASH2 in Hamburg. The main goals of the instrument are to follow the dynamics of atoms, molecules and small clusters on their natural time-scale and to study non-linear light-matter interaction with such systems. To this end, the reaction microscope is combined with an in-line extreme-ultraviolet (XUV) split-delay and focusing optics, which allows time-resolved XUV-XUV pump-probe spectroscopy to be performed.

10.
Phys Rev Lett ; 122(7): 073001, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848607

ABSTRACT

Time delays for atomic photoemission obtained in streaking or reconstruction of attosecond bursts by interference of two-photon transitions experiments originate from a combination of the quantum mechanical Wigner time and the Coulomb-laser coupling. While the former was investigated intensively theoretically as well as experimentally, the latter attracted less interest in experiments and has mostly been subject to calculations. Here, we present a measurement of the Coulomb-laser coupling-induced time shifts in photoionization of neon at 59.4 eV using a terahertz (THz) streaking field (λ=152 µm). Employing a reaction microscope at the THz beamline of the free-electron laser in Hamburg (FLASH), we have measured relative time shifts of up to 70 fs between the emission of 2p photoelectrons (∼38 eV) and low-energetic (<1 eV) photoelectrons. A comparison with theoretical predictions on Coulomb-laser coupling reveals reasonably good agreement.

11.
Sci Rep ; 8(1): 4886, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559708

ABSTRACT

Terahertz (THz) radiation meaning electromagnetic radiation in the range from 0.1 (3) to 10 (30) has the unique advantage of easily penetrating many obstructions while being non-hazardous to organic tissue since it is non-ionizing. A shortcoming of this domain is the limited availability of high-sensitivity detector arrays respective THz cameras with >1k pixels. To overcome the imaging limitations of the THz domain, compressive imaging in combination with an optically controllable THz spatial light modulator is a promising approach especially when used in a single-pixel imaging modality. The imaging fidelity, performance and speed of this approach depend crucially on the imaging patterns also called masks and their properties used in the imaging process. Therefore, in this paper, it is investigated how the image quality after reconstruction is specifically influenced by the different mask types and their properties in a compressive imaging modality. The evaluation uses an liquid-crystal display based projector as spatial light modulator to derive specific guidelines for the use of binary and true greyscale masks in THz single-pixel imaging setups respective THz single-pixel cameras when used in far-field applications e.g. stand-off security imaging.

12.
Sci Rep ; 6: 38202, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910943

ABSTRACT

An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

13.
Sensors (Basel) ; 11(10): 9973-88, 2011.
Article in English | MEDLINE | ID: mdl-22163737

ABSTRACT

Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future.


Subject(s)
Environmental Monitoring/methods , Soil/chemistry , Terahertz Radiation , Absorption , Daucus carota , Fabaceae , Imaging, Three-Dimensional , Linear Models , Organic Chemicals/analysis , Reference Standards , Signal Processing, Computer-Assisted , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...