Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Sci ; 15(4): 678-695, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37603212

ABSTRACT

DNA methylation is an epigenetic alteration that plays a fundamental part in governing gene regulatory processes. The DNA methylation mechanism affixes methyl groups to distinct cytosine residues, influencing chromatin architectures. Multiple studies have demonstrated that DNA methylation's regulatory effect on genes is linked to the beginning and progression of several disorders. Researchers have recently uncovered thousands of phenotype-related methylation sites through the epigenome-wide association study (EWAS). However, combining the methylation levels of several sites within a gene and determining the gene-level DNA methylation remains challenging. In this study, we proposed the supervised UMAP Assisted Gene-level Methylation method (sUAGM) for disease prediction based on supervised UMAP (Uniform Manifold Approximation and Projection), a manifold learning-based method for reducing dimensionality. The methylation values at the gene level generated using the proposed method are evaluated by employing various feature selection and classification algorithms on three distinct DNA methylation datasets derived from blood samples. The performance has been assessed employing classification accuracy, F-1 score, Mathews Correlation Coefficient (MCC), Kappa, Classification Success Index (CSI) and Jaccard Index. The Support Vector Machine with the linear kernel (SVML) classifier with Recursive Feature Elimination (RFE) performs best across all three datasets. From comparative analysis, our method outperformed existing gene-level and site-level approaches by achieving 100% accuracy and F1-score with fewer genes. The functional analysis of the top 28 genes selected from the Parkinson's disease dataset revealed a significant association with the disease.

2.
Gene ; 823: 146366, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35202733

ABSTRACT

Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. Understanding the molecular mechanism and identifying potential biomarkers of PD promote effective treatments to the patients. Due to less invasiveness and easy accessibility, biomarkers from blood support early detection and diagnosis of PD. This study combined three independent PD microarray gene expression data from blood samples applying the early integration approach. Moderated t-statistics was employed to identify differentially expressed genes (DEGs). Relevant genes were selected using a two-layer embedded wrapper feature selection method with gradient boosting machine (GBM) in the first layer followed by an ensemble of wrappers including Recursive Feature Elimination (RFE), Genetic algorithm (GA) and Bi-directional elimination (Stepwise). All three wrappers were based on logistic regression classifier (LR). The PD-predictability of the generated signature was tested using nine supervised classification models, including eight shallow machine learning and one deep learning. On an independent dataset, GSE72267, Support Vector Machine-Radial (SVMR), and Deep Neural Network (DNN) showed the best performance with AUC 0.821 and 0.82, respectively. Comparison with existing blood-based PD signatures and the biological analysis verified the reliability of the proposed signature.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Genetic Markers , Parkinson Disease/diagnosis , Blood Chemical Analysis , Databases, Genetic , Deep Learning , Early Diagnosis , Gene Expression Regulation , Humans , Logistic Models , Oligonucleotide Array Sequence Analysis , Parkinson Disease/blood , Parkinson Disease/genetics , Supervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...