Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomark Insights ; 19: 11772719241256798, 2024.
Article in English | MEDLINE | ID: mdl-38895160

ABSTRACT

Breast cancer is a heterogeneous disease with diverse histological and molecular subtypes. Luminal breast tumors are the most diagnosed subtype. In luminal breast cancer, hormone receptors (including ER, PR, HER2) play a diagnostic and prognostic role. Despite the effectiveness of endocrine therapy in luminal breast tumors, tumor recurrence and resistance occur, and this may highlight evolutionary strategies for survival driven by stemness. In this review we thus consider the association between estrogen signaling and stemness in mediating tumor processes. Many studies report stemness as one of the factors promoting tumor progression. Its association with estrogen signaling warrants further investigation and provides an opportunity for the identification of novel biomarkers which may be used for diagnostic, prognostic, and therapeutic purposes. Breast cancer stem cells have been characterized (CD44+ CD24-) and their role in promoting treatment resistance and tumor recurrence widely studied; however, the complexity of tumor progression which also involve microenvironmental factors suggests the existence of more varied cell phenotypes which mediate stemness and its role in tumor progression.

2.
Front Genet ; 14: 1087432, 2023.
Article in English | MEDLINE | ID: mdl-37662839

ABSTRACT

The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.

3.
Clin Proteomics ; 20(1): 8, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36855072

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is a lethal cancer with a poor prognosis. The lack of specific and sensitive biomarkers results in delayed diagnosis with most patients presenting at late stages of the disease. Furthermore, there is little known about the molecular mechanisms associated with GBC, especially in patients of African ancestry. This study aimed to determine dysregulated proteins in South African GBC patients to identify potential mechanisms of the disease progression and plausible biomarkers. METHODS: Tissues (27 GBC, 13 Gallstone disease, and 5 normal tissues) and blood plasma (54 GBC and 73 Benign biliary pathology) were obtained from consenting patients. Protein extraction was performed on all tissues and liquid chromatography-mass spectrometry was used for proteomic profiling. A project-specific spectral library was built using the Pulsar search algorithm. Principal component and Spearman's rank correlation analyses were performed using PAST (V4.07b). Pathway and Network analyses were conducted using REACTOME (v3.7) and stringAPP (v1.7.0), respectively. RESULTS: In the tissue sample group, there were 62 and 194 dysregulated proteins in GBC compared to normal and gallstone groups, respectively. In the plasma group, there were 33 altered proteins in GBC compared to the benign biliary pathology group. We found 9 proteins (APOA1, APOA2, RET4, TTR, HEMO, HBB, HBA, PIGR, and APOE) to be commonly dysregulated in both tissue and plasma. Furthermore, a subset analysis demonstrated that 2 proteins, S100A8 and S100A9, were downregulated in GBC patients with GD history compared to those without. Pathway analysis showed that the dysregulated proteins in GBC patients were enriched in pathways involved in smooth muscle contraction, metabolism, ECM organization, and integrin cell surface interactions. CONCLUSION: The identified dysregulated proteins help in understanding GBC molecular mechanisms in our patient group. Furthermore, the alteration of specific proteins in both tissue and plasma samples suggests their potential utility as biomarkers of GBC in this sample cohort.

4.
J Thromb Thrombolysis ; 54(3): 401-410, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932382

ABSTRACT

BACKGROUND: Anastrozole is commonly used for the treatment of oestrogen receptor (ER)-positive breast cancer but can increase thromboembolic risk. It is unclear if ER presentation is associated with platelet-mediated hypercoagulation. We investigated the relationship between hypercoagulation and ERα and ERß expression in breast cancer cell lines under Anastrozole treatment. METHODS: In Model 1, MCF-7 or T47D cancer cells were treated with Anastrozole, then exposed to whole blood and platelet-rich plasma, modelling platelet engagement in the tumour bed. In Model 2, blood components were treated with Anastrozole, then exposed to cancer cells, modelling circulatory effects in the vasculature. Hypercoagulation was assessed as a combined function of thrombin activity, platelet CD62P and CD63 expression, and corresponding platelet ultrastructure. Tumour ERα and ERß were immunolocalised and following quantification assessed for correlation with hypercoagulatory parameters. RESULTS: Anastrozole enhanced hypercoagulation in both Models and cell lines. T47D cells induced more distinct features of hypercoagulation and responded by heightening ERß expression and sustaining expression of ERα, indicative of a more aggressive phenotype. Post-exposure to cell lines, CD62P and CD63 expression correlated, but this was not maintained following Anastrozole treatment. Substantive correlations could not be found explaining the changes in ER expression and hypercoagulatory parameters, indicating unknown causative factors. CONCLUSION: These results provide basic science evidence showing that the hypercoagulatory effects induced by Anastrozole treatment may be related to the tumour subphenotype. Clinical studies are required to determine whether tracking of hypercoagulatory parameters may hold value in describing subphenotypic alterations or metastatic potential during tumour progression.


Subject(s)
Estrogen Receptor beta , Neoplasms , Anastrozole , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogens , Receptors, Estrogen , Thrombin
5.
Forensic Sci Int Synerg ; 3: 100206, 2021.
Article in English | MEDLINE | ID: mdl-34988414

ABSTRACT

Lightning fatality identification relies primarily on soft tissue traumatic pattern recognition, prohibiting cause of death identification in cases of full skeletonisation. This study explores the effects of high impulse currents on human bone, simulating lightning-level intensities and characterising electrically induced micro-trauma through conventional thin-section histology and micro-focus X-ray computed tomography (µXCT). An experimental system for high impulse current application was applied to bone extracted from donated cadaveric lower limbs (n = 22). µXCT was undertaken prior to and after current application. Histological sections were subsequently undertaken. µXCT poorly resolved micro-trauma compared to conventional histology which allowed for identification and classification of lightning-specific patterns of micro-trauma. Statistical analyses demonstrated correlation between current intensity, extent and damage typology suggesting a multifaceted mechanism of trauma propagation - a combination of electrically, thermally and pressure induced alterations. This study gives an overview of high impulse current trauma to human bone, providing expanded definitions of associated micro-trauma.

SELECTION OF CITATIONS
SEARCH DETAIL
...