Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 818: 17-25, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29042208

ABSTRACT

Leflunomide, an immunosuppressive drug approved for the treatment of patients with rheumatoid arthritis, exhibits many mechanisms which may affect the nociceptive processing. Therefore, the present study aimed to evaluate the effect induced by leflunomide on the mechanical allodynia in models of inflammatory and neuropathic pain in mice and investigate mechanisms mediating such effects. Per os (p.o.) administration of leflunomide (25, 50 or 100mg/kg) inhibited the inflammatory edema and mechanical allodynia induced by intraplantar carrageenan. Even ongoing inflammatory edema and mechanical allodynia were reduced by leflunomide. Previous administration of naltrexone (10mg/kg, intraperitoneal) or glibenclamide (40mg/kg, p.o.) partially attenuated leflunomide antiallodynic activity. A single administration of leflunomide (50 or 100mg/kg, p.o.) also partially inhibited ongoing mechanical allodynia induced by chronic constriction injury (CCI) or repeated administrations of paclitaxel. The antiallodynic effect induced by leflunomide (50 or 100mg/kg, p.o.) in the model of neuropathic pain induced by CCI was associated with reduced production of tumor necrosis factor-α both at the injury site and ipsilateral paw. Leflunomide also reduced production of the chemokine CXCL-1 at the paw ipsilateral to the injury site. Concluding, leflunomide partially inhibited ongoing mechanical allodynia in models of inflammatory and neuropathic pain. The antiallodynic effect was associated with activation of opioidergic receptors and ATP-sensitive potassium channels and reduced production of inflammatory mediators. These data indicate leflunomide as a drug that should be further investigated aiming to identify a new analgesic pharmacotherapy and reinforces repositioning as an important strategy to identify new uses for approved drugs.


Subject(s)
Chemokine CXCL1/biosynthesis , Glyburide/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Isoxazoles/pharmacology , Naltrexone/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Isoxazoles/antagonists & inhibitors , Isoxazoles/therapeutic use , Leflunomide , Male , Mice , Neuralgia/drug therapy
2.
Eur J Pharmacol ; 769: 306-12, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26607465

ABSTRACT

Nicorandil is a drug characterized by the coupling of a nitric oxide (NO) donor to nicotinamide. We have previously demonstrated that nicotinamide exhibits activity in different models of pain and inflammation. Now, we investigated the effects induced by per os (p.o.) administration of nicorandil (25, 50 or 100mg/Kg) on neutrophil recruitment in a carrageenan-induced model of pleurisy in mice. Effects induced by nicorandil (100mg/kg) were compared with those induced by equimolar doses of nicotinamide (58mg/kg) and N-(2-hydroxyethyl)-nicotinamide (NHN; 79mg/kg). We also investigated whether effects on the production of inflammatory mediators play a role in the activity of nicorandil. P.o. nicorandil, 0.5h before and 1h after the i.pl. injection of carrageenan, reduced neutrophil recruitment. However, equimolar doses of nicotinamide or NHN failed to induce such effect. Single treatment (previous or late) with nicorandil (100mg/Kg, p.o.) also reduced neutrophils recruitment, although to a lesser extent when compared to the double treatment. Nicorandil reduced the concentrations of interleukin-1ß, CXCL-1 and prostaglandin E2 in the pleural exudate. Concluding, we demonstrated the activity of nicorandil in a model of pleurisy induced by carrageenan. This activity was characterized by reduction of the neutrophil accumulation and inhibition of production of inflammatory mediators. The effects induced by nicorandil on the leukocytes recruitment and production of inflammatory mediators contribute to a better understanding of its clinical benefits and indicate that these benefits may be due to its vasodilating and anti-inflammatory activities.


Subject(s)
Carrageenan/adverse effects , Neutrophil Infiltration/drug effects , Nicorandil/pharmacology , Pleurisy/drug therapy , Pleurisy/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/biosynthesis , Eicosanoids/biosynthesis , Female , Leukocytes/drug effects , Leukocytes/immunology , Leukocytes/metabolism , Mice , Nicorandil/therapeutic use , Pleurisy/chemically induced , Pleurisy/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...