Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114053

ABSTRACT

Data on diagnosis of infection in the general population are strategic for different applications in the public and private spheres. Among them, the data related to symptoms and people displacement stand out, mainly considering highly contagious diseases. This data is sensitive and requires data privacy initiatives to enable its large-scale use. The search for population-monitoring strategies aims at social tracking, supporting the surveillance of contagions to respond to the confrontation with COVID-19. There are several data privacy issues in environments where IoT devices are used for monitoring hospital processes. In this research, we compare works related to the subject of privacy in the health area. To this end, this research proposes a taxonomy to support the requirements necessary to control patient data privacy in a hospital environment. According to the tests and comparisons made between the variables compared, the application obtained results that contribute to the scenarios applied. In this sense, we modeled and implemented an application. By the end, a mobile application was developed to analyze the privacy and security constraints with COVID-19.


Subject(s)
Computer Security , Confidentiality , Data Management/methods , Algorithms , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Internet of Things , Mobile Applications , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Telemedicine , Wearable Electronic Devices
2.
Sensors (Basel) ; 20(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429513

ABSTRACT

The evolution of computing devices and ubiquitous computing has led to the development of the Internet of Things (IoT). Smart Grids (SGs) stand out among the many applications of IoT and comprise several embedded intelligent technologies to improve the reliability and the safety of power grids. SGs use communication protocols for information exchange, such as the Open Smart Grid Protocol (OSGP). However, OSGP does not support the integration with devices compliant with the Constrained Application Protocol (CoAP), a communication protocol used in conventional IoT systems. In this sense, this article presents an efficient software interface that provides integration between OSGP and CoAP. The results obtained demonstrate the effectiveness of the proposed solution, which presents low communication overhead and enables the integration between IoT and SG systems.

3.
Sensors (Basel) ; 20(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033254

ABSTRACT

Smart grid systems have become popular and necessary for the development of a sustainable power grid. These systems use different technologies to provide optimized services to the users of the network. Regarding computing, these systems optimize electrical services by processing a large amount of the data generated. However, privacy and security are essential in this kind of system. With a large amount of data generated, it is necessary to protect the privacy of users, because this data may reveal the users' personal information. Today, blockchain technology has proven to be an efficient architecture for solving privacy and security problems in different scenarios. Over the years, different blockchain platforms have emerged, attempting to solve specific problems in different areas. However, the use of different platforms fragmented the market, which was no different in the smart grid scenario. This work proposes a blockchain architecture that uses sidechains to make the system scalable and adaptable. We used three blockchains to ensure privacy, security, and trust in the system. To universalize the proposed solution, we used the Open Smart Grid Protocol and smart contracts. The results show that architecture security and privacy are guaranteed, making it feasible for implementation in real systems; although scalability issues regarding the storage of the data generated still exist.

SELECTION OF CITATIONS
SEARCH DETAIL
...