Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(12): e26274, 2011.
Article in English | MEDLINE | ID: mdl-22194778

ABSTRACT

The random amino acid copolymer poly(Y,E,A,K)(n) (Copaxone®) is widely used in multiple sclerosis treatment and a second generation copolymer poly(Y,F,A,K)(n) with enhanced efficacy in experimental autoimmune encephalomyelitis in mice has been described. A major mechanism through which copolymers function to ameliorate disease is the generation of immunosuppressive IL-10-secreting regulatory T cells entering the CNS. In addition, the antigen presenting cell to which these copolymers bind through MHC Class II proteins may have an important role. Here, both CCL22 (a Th2 cell chemoattractant) in large amounts and CXCL13 in much smaller amounts are shown to be secreted after administration of YFAK to mice and to a smaller extent by YEAK parallel to their serum concentrations. Moreover, bone marrow-derived macrophages secrete CCL22 in vitro in response to YFAK and to higher concentrations of YEAK. Strikingly, these chemokines are also secreted into serum of MHC Class II -/- mice, indicating that an innate immune receptor on these cells also has an important role. Thus, both the innate and the adaptive immune systems are involved in the mechanism of EAE amelioration by YFAK. The enhanced ability of YFAK to stimulate the innate immune system may account for its enhanced efficacy in EAE treatment.


Subject(s)
Amino Acids/pharmacology , Chemokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Innate/immunology , Macrophages/immunology , Peptides/pharmacology , Amino Acid Sequence , Amino Acids/administration & dosage , Amino Acids/blood , Amino Acids/immunology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Cell Line , Chemokine CCL22/metabolism , Chemokine CXCL13/metabolism , Chemokines/blood , Encephalomyelitis, Autoimmune, Experimental/pathology , Glatiramer Acetate , Histocompatibility Antigens Class II/immunology , Immunity, Innate/drug effects , Interleukin-3/metabolism , Kinetics , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Molecular Sequence Data , Organ Specificity/drug effects , Peptides/administration & dosage , Peptides/blood , Peptides/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology
2.
J Clin Pharmacol ; 51(5): 649-60, 2011 May.
Article in English | MEDLINE | ID: mdl-20940336

ABSTRACT

PI-2301 is an amino acid copolymer acting as an immunomodulator for the treatment of autoimmune diseases. The present study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics of PI-2301 in a single ascending dose, first-in-human study involving healthy, male adult volunteers. A total of 56 subjects were given a subcutaneous injection of PI-2301 ranging from 0.035 to 60 mg. The only consistent side effect was transient injection site reactions. We describe, for the first time, a pharmacokinetic assay to monitor amino acid copolymer concentration in human serum. PI-2301 was detected in the serum of subjects in the 10-, 30-, and 60-mg cohorts. Maximum serum concentration was achieved between 10 and 30 minutes postdosing with some compound detected 4 hours after dosing. PI-2301's lasting immunological properties were evident by an ex vivo recall assay showing T-cell proliferation and IL-13 production in subjects dosed with 1, 3, or 10 mg of PI-2301, up to 6 months after dosing. A transient increase in chemokine CXCL9 and CXCL10 plasma levels was seen in subjects dosed with 30 or 60 mg of PI-2301. These results are highly consistent with our preclinical findings and suggest that PI-2301 could facilitate the expansion of a favorable immune posture in patients with autoimmune disorders.


Subject(s)
Immunologic Factors/pharmacokinetics , Oligopeptides/pharmacokinetics , Polymers/pharmacokinetics , Proteins/pharmacokinetics , Adolescent , Adult , Aged , Antibodies/blood , Biomarkers/blood , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Dose-Response Relationship, Drug , Double-Blind Method , France , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Immunologic Factors/blood , Immunologic Factors/immunology , Injections, Subcutaneous , Interferon-gamma/metabolism , Interleukin-13/metabolism , Lymphocyte Activation/drug effects , Male , Middle Aged , Oligopeptides/administration & dosage , Oligopeptides/adverse effects , Oligopeptides/blood , Oligopeptides/immunology , Polymers/administration & dosage , Polymers/adverse effects , Proteins/administration & dosage , Proteins/adverse effects , Proteins/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Young Adult
3.
J Med Chem ; 50(25): 6367-82, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-17994684

ABSTRACT

Indomethacin, a nonselective cyclooxygenase (COX) inhibitor, was modified in three distinct regions in an attempt both to increase cyclooxygenase-2 (COX-2) selectivity and to enhance drug safety by covalent attachment of an organic nitrate moiety as a nitric oxide donor. A human whole-blood COX assay shows the modifications on the 3-acetic acid part of the indomethacin yielding an amide-nitrate derivative 32 and a sulfonamide-nitrate derivative 61 conferred COX-2 selectivity. Along with their respective des-nitrate analogs, for example, 31 and 62, the nitrates 32 and 61 were effective antiinflammatory agents in the rat air-pouch model. After oral dosing, though, only 32 increased nitrate and nitrite levels in rat plasma, indicating that its nitrate tether served as a nitric oxide donor in vivo. In a rat gastric injury model, examples 31 and 32 both show a 98% reduction in gastric lesion score compared to that of indomethacin. In addition, the nitrated derivative 32 inducing 85% fewer gastric lesions when coadministered with aspirin as compared to the combination of aspirin and valdecoxib.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemical synthesis , Indomethacin/analogs & derivatives , Indomethacin/chemical synthesis , Nitric Oxide Donors/chemical synthesis , Animals , Aspirin/adverse effects , Celecoxib , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Drug Synergism , Female , Gastric Mucosa/pathology , Humans , Hydroxamic Acids/adverse effects , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Indomethacin/adverse effects , Indomethacin/pharmacology , Male , Nitric Oxide Donors/adverse effects , Nitric Oxide Donors/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/pathology , Structure-Activity Relationship , Sulfonamides/pharmacology
4.
Bioorg Med Chem ; 14(8): 2589-99, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16356728

ABSTRACT

A series of glycolamide naproxen prodrugs containing a nitrate group as a nitric oxide (NO) donor moiety has been synthesized. These compounds were evaluated for their anti-inflammatory activity, naproxen release, and gastric tolerance. Compounds 4a, 4b, 5a, 5b, 7b, and 7c exhibited anti-inflammatory activity equivalent to that of the parent NSAID, naproxen-Na, in the rat carrageenan paw edema model. At equimolar doses relative to naproxen-Na, the NO-donor glycolamide derivatives 4a, 4b, 5a, 5b, 7b, and 7c were gastro-sparing in the rat. Naproxen formation from these NO-donor glycolamides varied among the structures examined, with the N-substituent on the amide group having a particular influence, and demonstrated their prodrug nature. Compound 7b was selected for exemplary demonstration that the glycolamide nitrates can be bioactivated to release NO. These data open the possibility that naproxen glycolamide nitrates may represent a safer alternative to naproxen as anti-inflammatory medicines.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Naproxen/pharmacology , Nitric Oxide Donors/pharmacology , Prodrugs , Amides/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Gastritis/chemically induced , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Naproxen/chemical synthesis , Naproxen/chemistry , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Rats , Rats, Sprague-Dawley
5.
Inflammopharmacology ; 12(5-6): 521-34, 2005.
Article in English | MEDLINE | ID: mdl-16259719

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and to provide pain relief but suffer from a major liability concerning their propensity to cause gastric damage. As nitric oxide (NO) is known to be gastro-protective we have synthesized a NO-donating prodrug of naproxen named NMI-1182. We evaluated two cyclo-oxygenase (COX)-inhibiting nitric oxide donors (CINODs), NMI-1182 and AZD3582, for their ability to be gastro-protective compared to naproxen and for their anti-inflammatory activity. NMI-1182 and AZD3582 were found to produce similar inhibition of COX activity to that produced by naproxen. Both NMI-1182 and AZD3582 produced significantly less gastric lesions after oral administration than naproxen. All three compounds effectively inhibited paw swelling in the rat carrageenan paw edema model. In the carrageenan air pouch model all three compounds significantly reduced PGE2 levels in the pouch exudate but only NMI-1182 and naproxen inhibited leukocyte influx. These data demonstrate that NMI-1182 has comparable anti-inflammatory activity to naproxen but with a much reduced likelihood to cause gastric damage.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Naphthalenes/pharmacology , Nitric Oxide Donors/pharmacology , Protective Agents/pharmacology , Animals , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Aorta, Abdominal/drug effects , Aorta, Abdominal/physiology , Carrageenan , Cyclooxygenase 1/blood , Cyclooxygenase 2/blood , Cyclooxygenase Inhibitors/blood , Cyclooxygenase Inhibitors/chemistry , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/prevention & control , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Humans , In Vitro Techniques , Inflammation/chemically induced , Inflammation/prevention & control , Male , Molecular Structure , Naphthalenes/blood , Naphthalenes/chemistry , Naproxen/blood , Naproxen/chemistry , Naproxen/pharmacology , Neutrophil Infiltration/drug effects , Nitric Oxide Donors/blood , Nitric Oxide Donors/chemistry , Protective Agents/chemistry , Rats , Rats, Sprague-Dawley , Vasodilation/drug effects
6.
Anesth Analg ; 101(2): 474-480, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16037164

ABSTRACT

UNLABELLED: Inadequate analgesia in hospitalized patients prompted the Joint Commission on Accreditation of Healthcare Organizations in 2001 to introduce standards that require pain assessment and treatment. In response, many institutions implemented treatment guided by patient reports of pain intensity indexed with a numerical scale. Patient safety associated with treatment of pain guided by a numerical pain treatment algorithm (NPTA) has not been examined. We reviewed patient satisfaction with pain control and opioid-related adverse drug reactions before and after implementation of our NPTA. Patient satisfaction with pain management, measured on a 1-5 scale, significantly improved from 4.13 to 4.38 (P < 0.001) after implementation of an NPTA. The incidence of opioid over sedation adverse drug reactions per 100,000 inpatient hospital days increased from 11.0 pre-NPTA to 24.5 post-NPTA (P < 0.001). Of these patients, 94% had a documented decrease in their level of consciousness preceding the event. Although there was an improvement in patient satisfaction, we experienced a more than two-fold increase in the incidence of opioid over sedation adverse drug reactions in our hospital after the implementation of NPTA. Most adverse drug reactions were preceded by a documented decrease in the patient's level of consciousness, which emphasizes the importance of clinical assessment in managing pain. IMPLICATIONS: Although patient satisfaction with pain management has significantly improved since the adoption of pain management standards, adverse drug reactions have more than doubled. For the treatment of pain to be safe and effective, we must consider more than just a one-dimensional numerical assessment of pain.


Subject(s)
Hospitals/standards , Pain Management , Pain Measurement/standards , Adult , Aged , Aged, 80 and over , Algorithms , Analgesics, Opioid/adverse effects , Analgesics, Opioid/therapeutic use , Drug Overdose , Female , Guidelines as Topic , Humans , Hypnotics and Sedatives/adverse effects , Male , Middle Aged , Patient Satisfaction , Safety
7.
J Med Chem ; 48(11): 3930-4, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15916445

ABSTRACT

Incorporation of a spacer group between the central scaffold and the aryl ring resulted in a new cyclooxygenase-2 (COX-2) selective inhibitor core structure, 3-[4-(methylsulfonyl)phenyl]-5-(trifluoromethyl)(2-pyridyl) phenyl ketone (20), with COX-2 IC50 = 0.25 microM and COX-1 IC50 = 14 microM (human whole blood assay). Compound 20 was orally active in the rat air pouch model of inflammation, inhibiting white blood cell infiltration and COX-2-derived PG production. Our data support the identification of a novel COX-2 selective inhibitor core structure exemplified by 20.


Subject(s)
Cyclooxygenase Inhibitors/chemical synthesis , Prostaglandin-Endoperoxide Synthases/metabolism , Pyridines/chemical synthesis , Sulfones/chemical synthesis , Administration, Oral , Animals , Carrageenan , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Dinoprostone/antagonists & inhibitors , Dinoprostone/biosynthesis , Inflammation/chemically induced , Inflammation/metabolism , Male , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Sulfones/chemistry , Sulfones/pharmacology
8.
J Med Chem ; 47(9): 2180-93, 2004 Apr 22.
Article in English | MEDLINE | ID: mdl-15084117

ABSTRACT

The synthesis of a series of novel pyrazoles containing a nitrate (ONO(2)) moiety as a nitric oxide (NO)-donor functionality is reported. Their COX-1 and COX-2 inhibitory activities in human whole blood are profiled. Our data demonstrate that pyrazole ring substituents play an important role in COX-2 selective inhibition, such that a cycloalkyl pyrazole (6b) was found to be a potent and selective COX-2 inhibitor. Other modifications at the 3 position of the central pyrazole ring (17b, 23b, 26b-I) enhanced COX-2 inhibitory potency. Among the pyrazoles synthesized, the oxime (23b) was identified as the most potent COX-2 selective inhibitor. Accordingly, 23b was profiled pharmacologically in the rat after oral administration and shown to possess potent antiinflammatory activity in the carrageenan-induced air-pouch model and less gastric toxicity than a standard COX-2 inhibitor when administered with background aspirin treatment. We suggest that the enhanced gastric tolerance of an NO-donor COX-2 selective inhibitor has the potential to augment the clinical profile of this drug class.


Subject(s)
Cyclooxygenase Inhibitors/chemical synthesis , Isoenzymes/antagonists & inhibitors , Nitrates/chemical synthesis , Nitric Oxide Donors/chemical synthesis , Pyrazoles/chemical synthesis , Administration, Oral , Animals , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/pharmacology , Female , Gastritis/chemically induced , Humans , In Vitro Techniques , Male , Membrane Proteins , Nitrates/chemistry , Nitrates/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology , Prostaglandin-Endoperoxide Synthases , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...