Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 108(20): 6485-97, 2004 May 20.
Article in English | MEDLINE | ID: mdl-18950138

ABSTRACT

This report examines the organization properties of new fluorescent DNA-lipids, either alone in water or in interaction with 1-octyl-beta-d-glucopyranoside micelles or egg phosphatidylcholine vesicles. We first describe the design and the syntheses of the conjugates. Then, we use UV-Vis absorption, steady-state fluorescence emission, electron microscopy, and fluorescence correlation spectroscopy after two-photon excitation to show that these DNA-lipids form spherical micelles in aqueous solution and incorporate much better in micelles than in vesicles. We also investigate the significance of the lipophilic chains of these DNA-lipids on the melting behavior of the double-stranded hybrids: in water melting curves are broadened whereas in amphiphilic assemblies duplexes melt as the unconjugated controls. This work is expected to be useful for improving the rational design of antisense medicines.

2.
J Am Chem Soc ; 123(34): 8177-88, 2001 Aug 29.
Article in English | MEDLINE | ID: mdl-11516267

ABSTRACT

Pure organic molecules exhibiting a suitable concave rigid shape are expected to give porous glasses in the solid state. Such a feature opens new opportunities to avoid crystallization and to improve molecular solubility in relation to the high internal energy of these solid phases. To quantitatively explore the latter strategy, a series of rigid tetrahedral conjugated molecules nC and the corresponding models nR have been synthesized. Related to the present purpose, several properties have been investigated using UV absorption, steady-state fluorescence emission, differential scanning calorimetry, (1)H NMR translational self-diffusion, magic angle spinning (13)C NMR, and multiple-beam interferometry experiments. The present tetrahedral crosses are up to 8 orders of magnitude more soluble than the corresponding model compounds after normalization to the same molecular length. In addition, they give concentrated monomeric solutions that can be used to cover surfaces with homogeneous films whose thickness goes down to the nanometer range. Such attractive features make cross-like molecular architectures promising for many applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...