Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Vaccines (Basel) ; 9(7)2021 06 24.
Article in English | MEDLINE | ID: mdl-34202529

ABSTRACT

Background: COVID-19 vaccines have had expedited reviews without sufficient safety data. We wanted to compare risks and benefits. Method: We calculated the number needed to vaccinate (NNTV) from a large Israeli field study to prevent one death. We accessed the Adverse Drug Reactions (ADR) database of the European Medicines Agency and of the Dutch National Register (lareb.nl) to extract the number of cases reporting severe side effects and the number of cases with fatal side effects. Result: The NNTV is between 200-700 to prevent one case of COVID-19 for the mRNA vaccine marketed by Pfizer, while the NNTV to prevent one death is between 9000 and 50,000 (95% confidence interval), with 16,000 as a point estimate. The number of cases experiencing adverse reactions has been reported to be 700 per 100,000 vaccinations. Currently, we see 16 serious side effects per 100,000 vaccinations, and the number of fatal side effects is at 4.11/100,000 vaccinations. For three deaths prevented by vaccination we have to accept two inflicted by vaccination. Conclusions: This lack of clear benefit should cause governments to rethink their vaccination policy.

3.
F1000Res ; 10: 369, 2021.
Article in English | MEDLINE | ID: mdl-35284065

ABSTRACT

The performance of diagnostic tests crucially depends on the disease prevalence, test sensitivity, and test specificity. However, these quantities are often not well known when tests are performed outside defined routine lab procedures which make the rating of the test results somewhat problematic. A current example is the mass testing taking place within the context of the world-wide SARS-CoV-2 crisis. Here, for the first time in history, laboratory test results have a dramatic impact on political decisions. Therefore, transparent, comprehensible, and reliable data is mandatory. It is in the nature of wet lab tests that their quality and outcome are influenced by multiple factors reducing their performance by handling procedures, underlying test protocols, and analytical reagents. These limitations in sensitivity and specificity have to be taken into account when calculating the real test results. As a resolution method, we have developed a Bayesian calculator, the Bayes Lines Tool (BLT), for analyzing disease prevalence, test sensitivity, test specificity, and, therefore, true positive, false positive, true negative, and false negative numbers from official test outcome reports. The calculator performs a simple SQL (Structured Query Language) query and can easily be implemented on any system supporting SQL. We provide an example of influenza test results from California, USA, as well as two examples of SARS-CoV-2 test results from official government reports from The Netherlands and Germany-Bavaria, to illustrate the possible parameter space of prevalence, sensitivity, and specificity consistent with the observed data. Finally, we discuss this tool's multiple applications, including its putative importance for informing policy decisions.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , COVID-19/diagnosis , COVID-19/epidemiology , Diagnostic Tests, Routine , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...