Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Indian J Pharm Sci ; 78(1): 65-72, 2016.
Article in English | MEDLINE | ID: mdl-27168683

ABSTRACT

The aim of present research was to prepare novel serum stable long circulating polymeric nanoparticles for curcumin with a modification to the well known and novel nanoparticle albumin bound technology. polyethylene glycol-albumin-curcumin nanoparticles were prepared using serum albumin and poly ethylene glycol using desolvation technique. Nanoparticles were characterized for encapsulation efficiency, particle size and surface morphology. Drug excipient compatibility was determined using fourier transform infrared spectroscopy. Physical state of the drug in the formulations was known by differential scanning colorimetry. In vitro release and solubility of the drug from nanoparticles were determined. In vivo Drug release, tissue uptake and kupffer cell uptake was determined with optimized nanoformulation in rats after intravenous administration. Cell viability assay was determined using breast cancer cell line MD-MB-231. Entrapment efficiency for prepared nanoparticle was above 95%. The polyethylene glycol-albumin-curcumin nanoparticles exhibited an interesting release profile with small initial burst followed by slower and controlled release. Solubility of the drug from the formulation was increased. A sustained release of drug from nanoparticles was observed for 35 days in both in vitro and in vivo studies with the optimized formulation. Polyethylene glycol-albumin-curcumin nanoparticles showed lesser liver and kupffer cell uptake as compared to that of curcumin-albumin nanoparticles suggesting the bestowment of stealthness to nanoparticles with pegylation. Also, the antiproliferative activity of polyethylene glycol-albumin-curcumin nanoparticle formulation was more as compared to native curcumin. Polyethylene glycol-albumin-curcumin nanoparticles thus developed can be conveniently used in breast cancer with improved efficacy compared to conventional therapies and as an alternate to nanoparticle albumin bound technology which is used in producing Abraxane, albumin based breast cancer targeting nanoparticles of paclitaxel.

2.
Pharm Res ; 18(5): 565-72, 2001 May.
Article in English | MEDLINE | ID: mdl-11465409

ABSTRACT

PURPOSE: The objective of this study was to determine the expression and activity of multidrug resistance-associated protein (MRP) in the retinal pigment epithelial (RPE) cells and to further assess whether BAPSG, a novel anionic aldose reductase inhibitor, interacts with MRP. METHODS: Functional and biochemical evidence for MRP was obtained in a human retinal pigment epithelial (ARPE-19) cell line and primary cultures of human retinal pigment epithelial (HRPE) cells. Fluorescein accumulation and efflux in the presence and absence of MRP inhibitors was used to obtain functional evidence for MRP. Western blots and RT-PCR were used to obtain biochemical evidence for MRP1. The influence of MRP inhibitors on BAPSG accumulation and efflux in ARPE-19 cells was determined to understand its interaction with MRP. RESULTS: MRP inhibitors increased fluorescein accumulation and reduced efflux in RPE cells. Both cell types exhibited a 190-kDa western blot band corresponding to MRP1 protein and a 287 bp RT-PCR band corresponding to MRP1 mRNA. MRP inhibitors reduced BAPSG efflux and increased its accumulation in ARPE-19 cells. CONCLUSIONS: MRP is functionally and biochemically active in human RPE cells. Anionic BAPSG is a likely substrate for MRP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Aldehyde Reductase/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Glycine/analogs & derivatives , Glycine/metabolism , Pigment Epithelium of Eye/metabolism , Sulfones/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antimetabolites/pharmacology , Blotting, Western , Cell Line , Cold Temperature , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fluorescein/chemistry , Glycine/pharmacology , Humans , Indicators and Reagents , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Sulfones/pharmacology , Tetrazolium Salts , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...