Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 5: 18, 2018.
Article in English | MEDLINE | ID: mdl-29541639

ABSTRACT

Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

2.
J Proteomics ; 157: 1-9, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28161412

ABSTRACT

Chinook salmon (Oncorhynchus tshawytscha) are external fertilizers that display sneak-guard alternative reproductive tactics. The larger hooknose males dominate mating positions, while the smaller jack males utilize sneak tactics to achieve fertilization. Although poorly understood, previous studies have suggested that differences in spermatozoa quality may play a critical role in sperm competition. Considering that the seminal plasma strongly regulates spermatozoa quality and other processes critical for fertilization success, we employed label free quantitative mass spectrometry utilizing ion mobility separation coupled to cross-species bioinformatics to examine the seminal plasma proteome of Chinook salmon. A total of 345 proteins were identified in all biological replicates analyzed, including many established seminal plasma proteins that may serve as future biomarkers for Chinook salmon fertility and sperm competition. Moreover, we elucidated statistically significant protein abundance differences between hooknose and jack male tactics. Proteins involved in membrane remodeling, proteolysis, hormonal transport, redox regulation, immunomodulation, and ATP metabolism were among the proteins reproducibly identified at different levels and represent putative factors influencing sperm competition between jack and hooknose males. This study represents the largest seminal plasma proteome from teleost fish and the first reported for Chinook salmon. SIGNIFICANCE: Chinook salmon (Oncorhynchus tshawytscha) males represent an example of male alternative reproductive tactics where diverse reproductive strategies are thought to increase sexual selection. While seminal plasma has been shown to play an important regulatory role in sperm competition in many species, little is known about the protein composition of the seminal plasma of salmon. Therefore, seminal plasma isolated from the two alternative reproductive tactics of Chinook salmon (small sneaky jacks and large dominant hooknoses) were analyzed by label free quantitative mass spectrometry employing data independent acquisition and ion mobility separation. This yielded the largest proteome data set of the seminal plasma from salmon and the first to examine protein abundance differences between male alternative reproductive tactics. The quantitative proteomic data provides insight into possible unique mechanistic aspects of Chinook salmon alternative reproductive tactics utilized for sperm competition and fertilization success.


Subject(s)
Fish Proteins/metabolism , Proteomics , Salmon/metabolism , Semen/metabolism , Seminal Plasma Proteins/metabolism , Animals , Male
3.
Free Radic Biol Med ; 89: 512-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26453916

ABSTRACT

Hydrogen sulfide (H2S) is produced enzymatically by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE), as well as other enzymes in mammalian tissues. These discoveries have led to the crowning of H2S as yet another toxic gas that serves as a gasotransmitter like NO and CO. H2S is thought to exert its biological effects through its reaction with cysteine thiols in proteins, yielding sulfurated thiol (-SSH) derivatives. One of the first proteins shown to be modified by H2S was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [1] where the S-sulfuration of the active site cysteine (Cys 152) resulted in ~7-fold increase in the activity of the enzyme. In the present study we have attempted to reproduce this result with no success. GAPDH in its reduced, or hydrogen peroxide, or glutathione disulfide, or nitrosonium oxidized forms was reacted with sulfide or polysulfides. Sulfide had no effect on reduced GAPDH activity, while polysulfides inhibited GAPDH to ~42% of control. S-sulfuration of GAPDH occurred at Cys 247 after sulfide treatment, Cys 156 and Cys 247 after polysulfide treatment. No evidence of S-sulfuration at active site Cys 152 was discovered. Both sulfide and polysulfide was able to restore the activity of glutathione disulfide oxidized GAPDH, but not to control untreated levels. Treatment of glutathione disulfide oxidized GAPDH with polysulfide also produced S-sulfuration of Cys 156. Treatment of a C156S mutant of GAPDH with sulfide and polysulfide resulted in S-sulfuration of Cys 152, which also caused a decrease and not an increase in enzymatic activity. Computational chemistry shows S-sulfuration of Cys 156 may affect the position of catalytic Cys 152, raising its pKa by 0.5, which may affect the nucleophilicity of Cys 152. The current study raises significant questions about the reported ability of H2S to activate GAPDH by the sulfuration of its active site thiol, and indicates that polysulfide is a stronger protein S-sulfurating agent than sulfide.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Enzyme Activation , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Humans , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , In Vitro Techniques , Mass Spectrometry , Models, Molecular , Oxidation-Reduction , Sulfides/metabolism , Sulfides/pharmacology
4.
J Phys Chem A ; 119(1): 5-13, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25490235

ABSTRACT

In this study, we examined compound-specific stable carbon isotope ratios for phenolic compounds in secondary organic aerosol (SOA) formed by photooxidation of isotope-label-free toluene. SOA generated by photooxidation of toluene using a continuous-flow reactor and an 8 m(3) indoor smog chamber was collected on filters, which were extracted with acetonitrile for compound-specific analysis. Eight phenolic compounds were identified in the extracts using a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined using a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5-6‰ compared to the initial isotope ratio of toluene, whereas the isotope ratio for 4-nitrophenol remained identical to that of toluene. On the basis of the reaction mechanisms proposed in previous reports, stable carbon isotope ratios of these products were calculated. By comparing the observed isotope ratios with the predicted isotope ratios, we explored possible production pathways for the particulate phenolic compounds.


Subject(s)
Phenols/chemical synthesis , Toluene/chemistry , Aerosols/chemistry , Carbon Isotopes , Gas Chromatography-Mass Spectrometry , Kinetics , Molecular Structure , Oxidation-Reduction , Phenols/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...