Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 129(10): 100502, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36112432

ABSTRACT

Integrated technologies greatly enhance the prospects for practical quantum information processing and sensing devices based on trapped ions. High-speed and high-fidelity ion state readout is critical for any such application. Integrated detectors offer significant advantages for system portability and can also greatly facilitate parallel operations if a separate detector can be incorporated at each ion-trapping location. Here, we demonstrate ion quantum state detection at room temperature utilizing single-photon avalanche diodes (SPADs) integrated directly into the substrate of silicon ion trapping chips. We detect the state of a trapped Sr^{+} ion via fluorescence collection with the SPAD, achieving 99.92(1)% average fidelity in 450 µs, opening the door to the application of integrated state detection to quantum computing and sensing utilizing arrays of trapped ions.

2.
IEEE Trans Biomed Eng ; 69(6): 1943-1953, 2022 06.
Article in English | MEDLINE | ID: mdl-34847015

ABSTRACT

OBJECTIVE: Diffuse correlation spectroscopy (DCS) is an optical technique that allows for the non-invasive measurement of blood flow. Recent work has shown that utilizing longer wavelengths beyond the traditional NIR range provides a significant improvement to signal-to-noise ratio (SNR). However, current detectors both sensitive to longer wavelengths and suitable for clinical applications (InGaAs/InP SPADs) suffer from suboptimal afterpulsing and dark noise characteristics. To overcome these barriers, we introduce a cross correlation method to more accurately recover blood flow information using InGaAs/InP SPADs. METHODS: Two InGaAs/InP SPAD detectors were used for during in vitro and in vivo DCS measurements. Cross correlation of the photon streams from each detector was performed to calculate the correlation function. Detector operating parameters were varied to determine parameters which maximized measurement SNR.State-space modeling was performed to determine the detector characteristics at each operating point. RESULTS: Evaluation of detector characteristics was performed across the range of operating conditions. Modeling the effects of the detector noise on the correlation function provided a method to correct the distortion of the correlation curve, yielding accurate recovery of flow information as confirmed by a reference detector. CONCLUSION: Through a combination of cross-correlation of the signals from two detectors, model-based characterization of detector response, and optimization of detector operating parameters, the method allows for the accurate estimation of the true blood flow index. SIGNIFICANCE: This work presents a method by which DCS can be performed at longer NIR wavelengths with existing detector technology, taking advantage of the increased SNR.


Subject(s)
Photons , Water , Hemodynamics , Signal-To-Noise Ratio , Spectrum Analysis
3.
Appl Opt ; 41(36): 7671-8, 2002 Dec 20.
Article in English | MEDLINE | ID: mdl-12510937

ABSTRACT

We have developed a threedimensional imaging laser radar featuring 3-cm range resolution and single-photon sensitivity. This prototype direct-detection laser radar employs compact, all-solid-state technology for the laser and detector array. The source is a Nd:YAG microchip laser that is diode pumped, passively Q-switched, and frequency doubled. The detector is a gated, passively quenched, two-dimensional array of silicon avalanche photodiodes operating in Geigermode. After describing the system in detail, we present a three-dimensional image, derive performance characteristics, and discuss our plans for future imaging three-dimensional laser radars.

SELECTION OF CITATIONS
SEARCH DETAIL