Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(12): e202319308, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38231568

ABSTRACT

Direct and stereodivergent Michael additions of N-acyl 1,3-thiazinane-2-thiones to α,ß-unsaturated aldehydes catalyzed by chiral nickel(II) complexes are reported. The reactions proceed with a remarkable regio-, diastereo-, and enantioselectivity, so access to any of the four potential Michael stereoisomers is granted through the appropriate choice of the chiral ligand of the nickel(II) complex. Simple removal of the heterocyclic scaffold furnishes a wide array of either syn or anti enantiomerically pure derivatives, which can be exploited for the asymmetric synthesis of biologically active compounds, as demonstrated in a new approach to tapentadol. In turn, a mechanism, based on theoretical calculations, is proposed to account for the stereochemical outcome of these transformations.

2.
Dalton Trans ; 52(11): 3265-3269, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36857677

ABSTRACT

Complexes trans-[PdX2L2] (X = Cl and Br), where L is 1-(PR2),2-(CHCH-C(O)Ph)-C6F4 (R = Ph, Cy, and iPr), display phosphorescent emission in the solid state, whereas due to their substantially lower lifetimes, the free ligands exhibit fluorescent behaviour. Alternatively, structurally identical derivatives with halide replaced by CN- or Pd replaced by Pt are non-emissive. DFT calculations explain this diverse behaviour, showing that the hybridization of orbitals of the MX2 moiety with those of the chalcone fragment of ligands is significant only for the LUMO of the emissive compounds. In other words, in our complexes, only MLMCT processes (LM = Metal-perturbed Ligand-centered orbital) lead to observable luminescence.

3.
Org Lett ; 25(4): 659-664, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36700336

ABSTRACT

A direct and asymmetric syn-aldol reaction of N-acyl-1,3-oxazinane-2-thiones with dialkyl acetals from aromatic acetals in the presence of 2-5 mol % [DTBM-SEGPHOS]NiCl2, TMSOTf, and lutidine has been developed. It has been established that the oxazinanethione heterocycle, used for the first time as a scaffold in asymmetric carbon-carbon bond-forming reactions, can be smoothly removed to give access to a variety of enantiomerically pure compounds with high synthetic value.

4.
Inorg Chem ; 61(51): 20931-20941, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36512673

ABSTRACT

Two series of dinuclear gold(I) complexes that contain two Au-chromophore units (chromophore = dibenzofurane or dimethylfluorene) connected through a diphosphane bridge that differs in the flexibility and length (diphosphane = dppb for 1,4-bis(diphenylphosphino)butane, DPEphos for bis[(2-diphenylphosphino)phenyl]ether, xanthphos for 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and BiPheP for 2,2'-bis(diphenylphosphino)-1,1'-biphenyl) have been synthesized and structurally characterized. Their photophysical properties have been carefully investigated, paying attention to the role of the presence, or absence, of aurophilic contacts and their nature (intra- or intermolecular character). This analysis was permitted due to the X-ray crystallographic determination of all of the structures of the compounds discussed herein. The quantum yields of the triplet population, ϕT, have been calculated by nanosecond-laser flash photolysis measurements, and we could determine the main role of the character of the aurophilic contacts in the resulting ϕT, being especially favored in the presence of intermolecular contacts. Time-dependent density functional theory (TD-DFT) calculations support the absorption and emission assignments and the shorter distance between S1 and the closest triplet excited state energy in the case of the compounds with a higher triplet-state population.

5.
Dalton Trans ; 51(42): 16282-16291, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36218339

ABSTRACT

The synthesis of the gold(I) alkynyl-fluorene compound 2 containing a diphosphane (dppb = 1,4-bisdiphenylphosphanebutane) has been easily achieved by the treatment of the previously synthesized [2-ethynylfluorene-Au]n polymer (1) and the corresponding dppb diphosphane in an adequate 2 : 1 stoichiometry. Compound 2 shows a boat-tweezer conformation that makes it ideal for being used as a host in molecular recognition processes. Different polyaromatic hydrocarbons (PAHs) and polyfluorinated compounds (PFCs) have been used as guests and a stronger interaction has been detected for PAHs, especially for anthracene, in agreement with spectrofluorometric titrations and the calculated values of the association constants, which is confirmed by DFT calculations. Compound 2 has then been immobilized in different organic matrices, in order to enhance room temperature phosphorescence (RTP). This promotes sensing with dual emission and furthermore in the case of the analytes under investigation, phosphorescence is observed in a range of wavelengths that do not coincide with the fluorescence emission of PAHs and PFCs.


Subject(s)
Gold , Hydrocarbons, Aromatic , Luminescence , Spectrometry, Fluorescence , Polymers
6.
Chemistry ; 28(38): e202200671, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35504848

ABSTRACT

A direct and asymmetric triisopropylsilyltrifluoromethanesulfonate (TIPSOTf) mediated aldol reaction of N-azidoacetyl-1,3-thiazolidine-2-thione with aromatic aldehydes catalyzed by a chiral nickel(II)-Tol-BINAP complex has been developed (BINAP=2,2'-bis(diphenylphosphino)-1,1'-binaphthyl). The catalytic protocol gives the corresponding anti α-azido-ß-silyloxy adducts with outstanding stereocontrol and in high yields. Theoretical calculations account for the stereochemical outcome of the reaction and lay the foundations for a mechanistic model. In turn, the easy removal of the thiazolidinethione yields a wide array of enantiomerically pure derivatives in a straightforward and efficient manner. Such a noteworthy character of the heterocyclic scaffold together with the appropriate manipulation of the azido group open a new route to the synthesis of di- and tripeptide blocks containing a ß-aryl-ß-hydroxy-α-amino acid.


Subject(s)
Aldehydes , Nickel , Aldehydes/chemistry , Amino Acids/chemistry , Catalysis , Nickel/chemistry , Stereoisomerism , Thiazolidines
7.
Org Lett ; 23(22): 8727-8732, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34751033

ABSTRACT

Water-soluble coronenes, that form nanoparticles by self-association, work as new fluorescent materials by complexation with cucurbit[7]uril, as well as selective turn-on fluorogenic sensors for nitroaromatic explosives with remarkable selectivity, by using only water as solvent.

8.
J Phys Chem B ; 125(42): 11751-11760, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34665627

ABSTRACT

Six gold(I) complexes (R3P-Au-Coum) containing three different alkynylcoumarin chromophores (Coum) with different electron-donating and electron-withdrawing characteristics and two different water-soluble phosphanes (PR3 = PTA (a) and DAPTA (b)) have been synthesized (1a,b, unsubstituted coumarin; 2a,b, 4-methyl substituted coumarin; 3a,b, 3-chloro and 4-methyl substituted coumarin). A comprehensive study of the photophysical properties of the R3P-Au-Coum, together with their propynyloxycoumarin precursors 1-3, was performed in solution at room and low temperatures. Spectral and photophysical characteristics of the R3P-Au-Coum essentially depend on the electronic characteristics of the propynyloxycoumarin ligand. The presence of the Au(I) atom was found to be responsible for an increase of the intersystem crossing, with triplet state quantum yield values, ϕT, ranging from ∼0.05 to 0.35 and high coumarin phosphorescence quantum yield values for derivatives 1 and 2; fluorescence dominates the deactivation in derivatives 3. Efficient singlet oxygen photosensitization was observed for the new compounds 3a,b. From TDDFT calculations, the relevant HOMO and LUMO of the compounds, i.e., those involved in the transitions, are dominated by the frontier orbitals associated with the coumarin core. The Au(I)-phosphane structure introduces a new transition assigned to an intraligand transition involving the phosphane ligand, and π(C≡C) system, to the p orbitals of phosphorus and gold atoms.


Subject(s)
Electrons , Gold , Fluorescence , Ligands , Singlet Oxygen
9.
Angew Chem Int Ed Engl ; 60(28): 15307-15312, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33872449

ABSTRACT

A direct and asymmetric aldol reaction of N-acyl thiazinanethiones with aromatic aldehydes catalyzed by chiral nickel(II) complexes is reported. The reaction gives the corresponding O-TIPS-protected anti-aldol adducts in high yields and with remarkable stereocontrol and atom economy. Furthermore, the straightforward removal of the achiral scaffold provides enantiomerically pure intermediates of synthetic interest, which involve precursors for anti-α-amino-ß-hydroxy and α,ß-dihydroxy carboxylic derivatives. Theoretical calculations explain the observed high stereocontrol.

10.
Chemistry ; 27(5): 1810-1820, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33151003

ABSTRACT

The synthesis of two series of gold(I) complexes with the general formulae PR3 -Au-C≡C-phenanthrene (PR3 =PPh3 (1 a/2 a), PMe3 (1 b/2 b), PNaph3 (1 c/2 c)) or (diphos)(Au-C≡C-phenanthrene)2 (diphos=1,1-bis(diphenylphosphino)methane, dppm (1 d/2 d), 1,4-bis(diphenylphosphino)butane, dppb (1 e/2 e)) has been realized. The two series differ in the position of the alkynyl substituent on the phenanthrene chromophore, being at the 9-position (9-ethynylphenanthrene) for the L1 series and at the 2-position (2-ethynylphenanthrene) for the L2 series. The compounds have been fully characterized by 1 H, 31 P NMR, and IR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction resolution in the case of compounds 1 a, 1 e, 2 a, and 2 c. The emissive properties of the uncoordinated ligands and corresponding complexes have been studied in solution and within organic matrixes of different polarity (polymethylmethacrylate and Zeonex). Room-temperature phosphorescence (RTP) is observed for all gold(I) complexes whereas only fluorescence can be detected for the pure organic chromophore. In particular, the L2 series presents better luminescent properties regarding the intensity of emission, quantum yields, and RTP effect. Additionally, although the inclusion of all the compounds in organic matrixes induces an enhancement of the observed RTP owing to the decrease in non-radiative deactivation, only the L2 series completely suppresses the fluorescence, giving rise to pure phosphorescent materials.

12.
Dalton Trans ; 49(38): 13326-13338, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32944721

ABSTRACT

The perylene derivative 2-(3-perylenyl)-4-methylpyridine (HPerPy) was prepared and used to synthesize [Ag(HPerPy)(PPh3)(OClO3)], with the perylene ligand bonded to the metal centre only by the pyridine nitrogen. The treatment of HPerPy with [Pd(OAc)2] in methanol or acetic acid led to acetate bridged dimers (µ-OOCCH3)2[Pd(PerPy)]2, six-membered or five-membered cycled at the perylenyl fragment. Substitution reactions afforded mononuclear compounds [Pd(PerPy)(acac)] (six-member or five-member cycled) and [Pd(PerPy)(S2COMe)] (six-member or five-member cycled). The reaction of HPerPy with a platinum(ii) fragment led to a five-membered cyclometallated Pt(ii) complex [Pt(PerPy)(acac)]. The oxidative addition with MeI gave the corresponding cyclometallated Pt(iv) compound [Pt(PerPy)(acac)MeI]. X-ray single crystal studies of compounds [Ag(HPerPy)(PPh3)(OClO3)], (µ-OOCCH3)2[Pd(PerPy)]2-five-membered, [Pd(PerPy)(acac)]-six-membered, [Pd(PerPy)(S2COMe)]-five-membered, [Pt(PerPy)(acac)]-five-membered, and [Pt(PerPy)(acac)MeI]-five-membered confirmed the proposed structures. The UV-Vis spectra show one intense absorption with vibronic coupling in the visible region with maxima in the range of 448-519 nm. DFT calculations were carried out for the absorption spectra of the HPerPy molecule and representative complexes [M(PerPy)(acac)] (M: Pd, Pt; five and six-membered isomers) and [Pt(PerPy)(acac)MeI], showing that the lowest energy most intense transition in the complexes corresponds to the HOMO → LUMO transition in the perylene moiety, although affected by the metallacycle size and the metal nature. All the compounds are fluorescent in solution, due to the perylene fragment. The emission spectra display maxima in the range of 468-549 nm, with quantum yields from 1.1 to 82%. The attenuation of the intensity of fluorescence by the presence of heavy atoms and the formation of metallacycles has been experimentally determined and sequenced.

13.
Chemistry ; 26(50): 11540-11548, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32267577

ABSTRACT

A direct and highly enantioselective reaction of N-azidoacetyl-1,3-thiazolidine-2-thione with trimethyl orthoformate catalyzed by Tol-BINAPNiCl2 in the presence of TESOTf and 2,6-lutidine is reported. The heterocyclic scaffold can be easily removed by addition of a wide array of amines to give the corresponding enantiomerically pure 2-azido-3,3-dimethoxypropanamides in high yields. Appropriate manipulation of the N-benzyl amide derivative provides an efficient access to the antiepileptic agent lacosamide through a new enantioselective C-C bond-forming process. DFT computational studies uncover clues for the understanding of the remarkable stereocontrol of the addition of a nickel(II) enolate to a putative oxocarbenium intermediate from trimethyl orthoformate.

14.
ACS Omega ; 4(6): 10729-10740, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460171

ABSTRACT

The potentially tridentate ligand bis[(1-methyl-2-benzimidazolyl)ethyl]amine (2BB) was employed to prepare copper complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 as bioinspired models of lytic polysaccharide copper-dependent monooxygenase (LPMO) enzymes. Solid-state characterization of [(2BB)CuI]OTf revealed a Cu(I) center with a T-shaped coordination environment and metric parameters in the range of those observed in reduced LPMOs. Solution characterization of [(2BB)CuII(H2O)2](OTf)2 indicates that [(2BB)CuII(H2O)2]2+ is the main species from pH 4 to 7.5; above pH 7.5, the hydroxo-bridged species [{(2BB)CuII(H2O) x }2(µ-OH)2]2+ is also present, on the basis of cyclic voltammetry and mass spectrometry. These observations imply that deprotonation of the central amine of Cu(II)-coordinated 2BB is precluded, and by extension, amine deprotonation in the histidine brace of LPMOs appears unlikely at neutral pH. The complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 act as precursors for the oxidative degradation of cellobiose as a cellulose model substrate. Spectroscopic and reactivity studies indicate that a dicopper(II) side-on peroxide complex generated from [(2BB)CuI]OTf/O2 or [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 oxidizes cellobiose both in acetonitrile and aqueous phosphate buffer solutions, as evidenced from product analysis by high-performance liquid chromatography-mass spectrometry. The mixture of [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 results in more extensive cellobiose degradation. Likewise, the use of both [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 with KO2 afforded cellobiose oxidation products. In all cases, a common Cu(II) complex formulated as [(2BB)CuII(OH)(H2O)]+ was detected by mass spectrometry as the final form of the complex.

15.
Chem Asian J ; 14(19): 3301-3312, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31400087

ABSTRACT

Two nickel complexes supported by tridentate NS2 ligands, [Ni2 (κ-N,S,S,S'-NPh {CH2 (MeC6 H2 R')S}2 )2 ] (1; R'=3,5-(CF3 )2 C6 H3 ) and [Ni2 (κ-N,S,S,S'-NiBu {CH2 C6 H4 S}2 )2 ] (2), were prepared as bioinspired models of the active site of [NiFe] hydrogenases. The solid-state structure of 1 reveals that the [Ni2 (µ-ArS)2 ] core is bent, with the planes of the nickel centers at a hinge angle of 81.3(5)°, whereas 2 shows a coplanar arrangement between both nickel(II) ions in the dimeric structure. Complex 1 electrocatalyzes proton reduction from CF3 COOH at -1.93 (overpotential of 1.04 V, with icat /ip ≈21.8) and -1.47 V (overpotential of 580 mV, with icat /ip ≈5.9) versus the ferrocene/ferrocenium redox couple. The electrochemical behavior of 1 relative to that of 2 may be related to the bent [Ni2 (µ-ArS)2 ] core, which allows proximity of the two Ni⋅⋅⋅Ni centers at 2.730(8) Å; thus possibly favoring H+ reduction. In contrast, the planar [Ni2 (µ-ArS)2 ] core of 2 results in a Ni⋅⋅⋅Ni distance of 3.364(4) Šand is unstable in the presence of acid.

16.
Org Lett ; 21(1): 305-309, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30582705

ABSTRACT

A wide array of new N-acyl thiazinanethiones are employed in a number of direct and enantioselective carbon-carbon-bond-forming reactions catalyzed by nickel(II) complexes. The electrophilic species are mostly prepared in situ from ortho esters, methyl ethers, acetals, and ketals, which makes the overall process highly efficient and experimentally straightforward. Theoretical calculations indicate that the reactions proceed through an open transition state in a SN1-like mechanism. The utility of this novel procedure has been demonstrated by the asymmetric preparation of synthetically useful intermediates and the total synthesis of peperomin D.

17.
Dalton Trans ; 47(32): 10932-10940, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-29951680

ABSTRACT

Iron and molybdenum complexes supported by a pincer-type dianionic [NS2]2- donor were prepared to compare their structural, spectroscopic, and electrochemical properties. The versatility of the [NS2]2Mo(iv) complex (2) to access different oxidation states was evidenced in the activation of methanol and isopropanol, oxidising them to formaldehyde or acetone with concomitant reduction and protonation to afford [NHS2]2Mo(ii), complex (3). This redox behaviour contrasts with the null reactivity observed for the analogous ferric complex [NS2][NHS2]Fe(iii) (1). Complex 2 presents a quasi-reversible process at E1/2 = -0.80 V relative to the ferrocenium/ferrocene couple (Fc+/Fc), which is attributed to the Mo(iv)/Mo(v) redox couple. Two irreversible cathodic processes were observed at Ecp = -1.59 and -2.20 V, which are attributed to the Mo(iv)/Mo(iii) and Mo(iii)/Mo(ii) redox couples. Cyclic voltammetry and solid-state structures obtained by X-ray crystallography support a 2H+ and 2e- process, whereby the Mo(iv) centre in 2 is reduced sequentially to Mo(iii), and finally to Mo(ii) in 3. These redox events were observed at Ecp = -1.22 and -2.15 V (vs. Fc+/Fc) in the anodic cyclic voltammograms of 2 in THF in the presence of acid. A new reduction peak was detected under these conditions at Ecp = -2.30 V, consistent with electrocatalytic proton reduction. This was corroborated for 2 as a catalyst precursor in the presence of increasing amounts of p-toluenesulfonic acid, with the addition of 2 to 14 equivs resulting in an increase of the current measured.

18.
Dalton Trans ; 46(9): 2844-2854, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28181599

ABSTRACT

A systematic theoretical analysis of homopolar dihydrogen interactions in group 13 compounds is presented here. Ab initio calculations and structural analysis allow us to demonstrate that interactions involving B-HH-B contacts are comparable in strength to the previously studied C-HH-C ones, yet attractive and important for the stabilization of dimers of large molecules. We have also shown that a polyhedral skeleton enhances the B-HH-B interaction strength with respect to non-polyhedral compounds, and it has also been proven that Al-HH-Al and Ga-HH-Ga interactions can be attractive in some cases. If HE (B, Al and Ga) short contacts are present, the interaction is significantly strengthened, especially for Al and Ga. In general, HH interactions combined with associated HE (B, Al and Ga) short contacts are responsible for the stability of a large number of dimers of group 13 compounds and may play an important role in the packing of their crystal structures.

19.
Org Biomol Chem ; 15(8): 1842-1862, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28155959

ABSTRACT

A total synthesis of (+)-herboxidiene/GEX 1A has been accomplished from (R)- and (S)-lactate esters in a highly efficient manner. Key steps of the synthesis involve substrate-controlled titanium-mediated aldol reactions from chiral lactate-derived ethyl ketones, an oxa-Michael cyclization, an Ireland-Claisen rearrangement, and a Suzuki coupling. Furthermore, computational studies of the oxa-Michael reaction have unveiled the dramatic influence of intramolecular hydrogen bonds on the stereochemical outcome of such cyclizations, whereas biological analyses have clearly proved the important cytoxicity of (+)-herboxidiene/GEX 1A.


Subject(s)
Fatty Alcohols/chemical synthesis , Pyrans/chemical synthesis , Fatty Alcohols/chemistry , Molecular Conformation , Pyrans/chemistry , Stereoisomerism
20.
Dalton Trans ; 46(7): 2184-2195, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28127596

ABSTRACT

By using a potential tridentate ligand L ((2-piperazine-1-yl-ethyl)-pyridin-2-yl-methylene-amine), a series of group 12 metal complexes namely, [ZnLHCl2][Zn2LCl5]·2H2O (1), [CdL(SCN)2(CH3OH)]n (2), and [Hg(l-pyCO)Cl2] (3), were synthesized and structurally characterized. In all the complexes the piperazine nitrogen of the ligand takes part in coordination and leads to the complexes of group 12 metal ions having structural diversity. The X-ray diffraction analysis of complex 1 indicates for one Zn(ii) ion a geometry in between trigonal bipyramidal/square pyramidal and for the second a distorted tetrahedral sphere. In the polymeric complex 2 the Cd(ii) ion shows a distorted octahedral environment, while in the mononuclear complex 3, where Hg(ii) exhibits a square-pyramidal geometry, an unexpected condensation between the uncoordinated NH piperazine fragment with 2-pyridinecarboxaldehyde was detected. The M-N bond lengths in all the complexes are in accordance with the metal ionic radius. Continuous shape measures through a DFT approach provide the coordination environment around each metal centre that is comparable with the experimental observations. We have also investigated the importance of hydrogen bonding of methanol in the generation of the polymeric Cd complex 2 along with the rearrangement of the tridentate ligand to generate an octahedral complex. The photoluminescence properties of the complexes as well as of the ligand were investigated in solution at ambient temperature. The low quantum yield of the ligand was ascribed due to a very fast photoinduced electron transfer (PET) from the nitrogen lone pair to the conjugated pyridine moiety. Complexation prevents the electron transfer, and consequently an increase in quantum yield was observed in the complexes. Among the three complexes the highest photoluminescence was exhibited by a Zn complex, being lower in Cd and Hg complexes as a consequence of the heavy atom perturbation effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...