Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 23(20): 2513-23, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24836507

ABSTRACT

Phenotype instability and premature hypertrophy prevent the use of human mesenchymal stromal cells (MSCs) for cartilage regeneration. Aim of this study was to investigate whether intermittent supplementation of parathyroid hormone-related protein (PTHrP), as opposed to constant treatment, can beneficially influence MSC chondrogenesis and to explore molecular mechanisms below catabolic and anabolic responses. Human MSCs subjected to chondrogenic induction in high-density culture received PTHrP(1-34), forskolin, dbcAMP, or PTHrP(7-34) either constantly or via 6-h pulses (three times weekly), before proteoglycan, collagen type II, and X deposition; gene expression; and alkaline phosphatase (ALP) activity were assessed. While constant application of PTHrP(1-34) suppressed chondrogenesis of MSCs, pulsed application significantly increased collagen type 2 (COL2A1) gene expression and the collagen type II, proteoglycan, and DNA content of pellets after 6 weeks. Collagen type 10 (COL10A1) gene expression was little affected but Indian hedgehog (IHH) expression and ALP activity were significantly downregulated by pulsed PTHrP. A faster response to PTHrP exposure was recorded for ALP activity over COL2A1 regulation, suggesting that signal duration is critical for catabolic versus anabolic reactions. Stimulation of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling by forskolin reproduced major effects of both treatment modes, whereas application of PTHrP(7-34) capable of protein kinase C (PKC) signaling was ineffective. Pulsed PTHrP exposure of MSCs stimulated chondrogenesis and reduced endochondral differentiation apparently uncoupling chondrogenic matrix deposition from hypertrophic marker expression. cAMP/PKA was the major signaling pathway triggering the opposing effects of both treatment modes. Intermittent application of PTHrP represents an important novel means to improve chondrogenesis of MSCs and may be considered as a supporting clinical-treatment mode for MSC-based cartilage defect regeneration.


Subject(s)
Antihypertensive Agents/pharmacology , Chondrogenesis/drug effects , Gene Expression Regulation/drug effects , Mesenchymal Stem Cells/metabolism , Parathyroid Hormone-Related Protein/pharmacology , Peptide Fragments/pharmacology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Antigens, Differentiation/biosynthesis , Cartilage Diseases/metabolism , Cartilage Diseases/pathology , Cartilage Diseases/therapy , Cells, Cultured , Female , Humans , Male , Mesenchymal Stem Cells/pathology , Protein Kinase C/metabolism , Proteins/pharmacology , Regeneration/drug effects
2.
Int J Cancer ; 131(9): 2016-26, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22323152

ABSTRACT

Stability of many tumor-relevant proteins is partly mediated by E3 ligases, which determine substrate specificity within the ubiquitin system. Recent data demonstrated that increased nuclear expression of the E3 ligase seven in absentia homologue (SIAH)-1 in human hepatocarcinogenesis supports tumor cell proliferation and migration. To define whether closely related SIAH-2 synergizes with protumorigenic SIAH-1, we systematically analyzed expression, localization and functional relevance of SIAH-2 in human hepatocellular carcinoma (HCC). Nuclear accumulation of SIAH-2 is detectable in more than 60% of all HCCs and correlates with tumor progression, cell proliferation and distant metastasis. An inverse correlation between nuclear SIAH-1 and SIAH-2 was detected, suggesting independent mechanisms for nuclear enrichment. Inhibition of nuclear SIAH-2 by RNAi in HCC cell lines reduced proliferation as well as lateral tumor cell motility and transmigration; however, combined knock down of both SIAH-1 and SIAH-2 did not further amplify biological effects compared to single gene inhibition. Reduction of SIAH-2 expression sensitizes HCC cells to the treatment with different cytostatic drugs, demonstrating that SIAH-2-targeting approaches may increase the response of HCC cells to conventional chemotherapy. Together, these data show that SIAH-2--as described for SIAH-1--accumulates in nuclei of HCC cells where it supports tumor growth and tumor cell dissemination. Because the nuclear pattern of SIAH-2 differs in HCC tissues from the SIAH-1 pattern and because the inactivation of SIAH-2 is not compensated by SIAH-1, the specific inhibition of SIAH-2 (especially in combination with other drugs) represents a promising therapeutic strategy for HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation , Humans , Liver Neoplasms/genetics , Neoplasm Metastasis , Nuclear Proteins/genetics , RNA Interference , RNA, Small Interfering , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...