Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(10): 7125-7137, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38717956

ABSTRACT

The Norrish type I (α-cleavage) reaction is an excellent photochemical method for radical-pair formation in solution. However, in cryogenic matrices, the starting material typically re-forms before the radical pair diffuses apart. This study focused on N2 extrusion from an azido alkyl radical to prevent radical-pair recombination. Irradiation of 2,2-diazido-2,3-dihydroinden-1-one (1) in methanol mainly yielded methyl 2-cyanomethylbenzoate (2) and 2-cyanomethylbenzoic acid (3) via α-cleavage. Laser flash photolysis of 1 in argon-saturated acetonitrile resulted in α-cleavage to form triplet biradical 31Br1 (λmax ∼ 410 nm, τ ∼ 400 ns). In contrast, upon irradiation in glassy 2-methyltetrahydrofuran matrices, triplet alkylnitrene 31N was directly detected using electron spin resonance (D/hc = 1.5646 cm-1, E/hc = 0.00161 cm-1) and absorption spectroscopy (λmax = 276 and 341 nm). Irradiation of 1 in argon matrices generated 31N, benzoyl azide 4, singlet benzoylnitrene 14N, and isocyanide 5, as revealed by IR spectroscopy. The experimental results supported by density functional theory calculations [B3PW91/6-311++G(d,p)] suggest that irradiation of 1 in matrices results in α-cleavage to form biradical 31Br1, which extrudes N2 to yield 31Br2. Rearrangement of 31Br2 into 31N competes with cleavage of a N3 radical to form radical 1Ra3. The N3/1Ra3 radical pair combines to form 4, which upon irradiation yields 14N and 5.

2.
J Phys Chem A ; 128(7): 1233-1240, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38350638

ABSTRACT

Matrix isolation infrared spectroscopy combined with density functional calculations has been used to form, isolate, and characterize the 1:1 hydrogen-bonded complexes of HCl with ferrocene and ruthenocene. Two unique structures were calculated for each complex, analogous to the two binding sites proposed for the attachment of proton to these metallocenes. The spectra, combined with calculated shifts of the H-Cl stretching mode, support the formation of a complex with the HCl hydrogen bonding to one of the cyclopentadienyl rings, exo to the plane of the ring. Evidence also was obtained for a second structure with the hydrogen of the HCl subunit directed toward the Fe or Ru center between the two cyclopentadienyl rings. This structure is similar to the proposed metal-bound proton structure based on earlier mass spectrometric and computational studies. Importantly, these results were supported by parallel experiments with DCl and the two metallocenes.

3.
J Phys Chem A ; 127(46): 9705-9716, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37939705

ABSTRACT

Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.

4.
J Phys Chem A ; 127(18): 4077-4085, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37099674

ABSTRACT

The reaction of zinc acetylacetonate, Zn(C5H7O2)2, with O3 is reported using matrix isolation, infrared spectroscopy, and theoretical calculations to identify reaction products and provide inferences about the reaction mechanism. A new "flow over" deposition technique is also reported that was used along with twin-jet and merged-jet deposition to explore this reaction under different conditions. Oxygen isotopic labeling with 18O was used to help confirm product identities. The primary observed reaction products include methyl glyoxal, formic acetic anhydride, acetyl hydroperoxide, and acetic acid. Additional weak products, including formaldehyde, were formed as well. The reaction appears to occur through the initial formation of a zinc-bound primary ozonide that can release methyl glyoxal and acetic acid or rearrange to a zinc-bound secondary ozonide, followed by product release of formic acetic anhydride and acetic acid or acetyl hydroperoxide from the zinc-bound species.

5.
J Phys Chem A ; 126(35): 5974-5984, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36017944

ABSTRACT

Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (∼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, ß-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.


Subject(s)
Sulfates , Sulfur , Aerosols/chemistry , Density Functional Theory , Oxidation-Reduction , Sulfates/chemistry
6.
Molecules ; 25(3)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012736

ABSTRACT

To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration.


Subject(s)
Alkenes/chemistry , Azides/chemistry , Cold Temperature , Isoxazoles/chemistry , Nitroso Compounds/chemistry , Photolysis , Alkenes/analysis , Azides/radiation effects , Isoxazoles/radiation effects , Nitroso Compounds/analysis , Quantum Theory
7.
J Org Chem ; 84(14): 9215-9225, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31262179

ABSTRACT

The photoreactivity of cyclic vinyl azides 1 (3-azido-2-methyl-cyclopenten-1-one) and 2 (3-azido-2-methyl-2-cyclohexen-1-one), which have five- and six-membered rings, respectively, was characterized at cryogenic temperature with electron paramagnetic resonance (EPR), IR, and UV spectroscopy. EPR spectroscopy revealed that irradiating (λ > 250 nm) vinyl azides 1 and 2 in 2-methyltetrahydrofuran at 10 K resulted in the corresponding triplet vinylnitrenes 31N (D/hc = 0.611 cm-1 and E/hc = 0.011 cm-1) and 32N (D/hc = 0.607 cm-1 and E/hc = 0.006 cm-1), which are thermally stable at cryogenic temperature. Irradiation of vinyl azides 1 (310 nm light-emitting diode at 12 K) and 2 (xenon arc lamp through a 310-350 nm filter at 8 K) in argon matrices showed that in competition with intersystem crossing to form vinylnitrenes 31N and 32N, vinyl azide 1 formed a small amount of ketenimine 3, whereas vinyl azide 2 formed significant amounts of azirine 7 and ketenimine 6. Thus, vinyl azide 1 undergoes intersystem crossing more efficiently than vinyl azide 2. Similarly, vinylnitrene 31N is much more photoreactive than vinylnitrene 32N. Quantum chemical calculations were used to support the mechanisms for forming vinylnitrenes 31N and 32N and their reactivity.

8.
J Phys Chem A ; 123(27): 5768-5780, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31150227

ABSTRACT

The thermal and photochemical reactions of ozone with ruthenocene were studied in argon matrices at 10-15 K by infrared spectroscopy. Irradiation of freshly deposited matrices with near-infrared light (λ = 880 nm) from an LED resulted in new peaks in their infrared spectra that were assigned to three new ruthenocene oxide structures (4, 5, and 6) calculated by the density functional theory. It is proposed that the near-infrared light caused photodissociation of some ozone molecules and subsequent reactions of the atomic oxygen produced with adjacent ruthenocene molecules in the matrix. Structures 4 and 5 contain a Ru=O oxo group resulting from the attack of atomic oxygen on the ruthenium atom, and structure 6 contains a C=O aldehyde group resulting from the attack of atomic oxygen on a ring carbon atom. Subsequent irradiation of the matrix with red light (λ = 625 nm) from an LED resulted in a fourth new structure (7), and it also initiated a reversible photochemical conversion 4 ⇄ 5 + O2, with the forward direction promoted by red light (λ = 625 nm) and the reverse direction promoted by near-infrared light (λ = 880 nm). Structure 7, which contains ruthenium-coordinated cyclopentadienyl, cyclopentadienone, and hydride ion, is the most stable of the four new structures as shown by the calculated energies relative to ruthenocene plus O(3P). Structure 7 is proposed as an intermediate in the chemical vapor deposition and atomic layer deposition of the Ru/RuO2 film forming reactions on substrates at elevated temperatures reported in the literature.

9.
J Phys Chem A ; 121(39): 7335-7342, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28926258

ABSTRACT

The thermal reaction of ozone with trimethyl aluminum was explored using twin jet, concentric jet, and merged jet deposition into cryogenic matrixes. Infrared spectroscopy and density functional theory calculations were employed to identify and characterize the products formed in each case. Together, these deposition techniques provide information over the essentially full course of the gas-phase reaction. At short times with twin jet deposition, the primary product is the O atom insertion product (CH3)2AlOCH3. With merged jet deposition and longer gas-phase mixing times, the methyl peroxy radical H3COO· was seen in good yield along with final stable products H2CO, H3COH, and C2H6. Production of Al2O3 and its deposition onto the walls of the reaction tube as a powdery film was noted as well. All of these outcomes were combined to propose a reaction mechanism for this system. Of particular note, the observation of H3COO· provides clear evidence for a free radical component to the overall mechanism.

10.
J Phys Chem A ; 119(41): 10272-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26397121

ABSTRACT

The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

11.
J Phys Chem A ; 119(12): 2834-44, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25710297

ABSTRACT

The thermal and photochemical reactions of (CH3)3Ga and O3 have been explored using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental data using twin jet deposition and theoretical calculations demonstrate the formation of multiple product species after deposition, annealing to 35 K, and UV irradiation of the matrices. The products were identified as (CH3)2GaOCH3, (CH3)2GaCH2OH, (CH3)(CH3O)Ga(OCH3), (CH3)2GaCHO, and (CH3)Ga(OCH3)(CH2OH). Product identifications were confirmed by annealing and irradiation behavior, (18)O substitution experiments, and high level theoretical calculations. Merged jet deposition led to a number of stable late reaction products, including C2H6, CH3OH, and H2CO. A white solid film was also noted on the walls of the merged (flow reactor) region of the deposition system, likely due to the formation of Ga2O3.

12.
J Phys Chem A ; 119(11): 2371-82, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25207471

ABSTRACT

The reactions between ferrocene (Cp2Fe) (2a) and ozone (O3) were studied using low-temperature matrix-isolation techniques coupled with theoretical density functional theory (DFT) calculations. Co-deposition of Ar/Cp2Fe and Ar/O3 gas mixtures onto a cryogenically cooled CsI window produced a dark-green charge-transfer complex, Cp2Fe-O3, that photodecomposed upon red (λ ≥ 600 nm) and infrared (λ ≥ 1000 nm) irradiation but was stable to green or blue irradiation. Products of photodecomposition were characterized by FT-IR, oxygen-18 labeling, and DFT calculations using the B3LYP functionals and the 6-311G++(d,2p) basis set. Likely, photochemical products included four structures having the molecular formula C10H10FeO, identified by DFT calculations based on their calculated infrared spectra and (18)O isotope shifts. Each of these calculated molecules had one intact and fully coordinated η(5)-C5H5 cyclopentadienyl (Cp) ring and (1) an η(5)-C5H5O cyclic ether (pyran ring) (2b), (2) an η(4)-C5H5O linear aldehyde (2c), (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom (2d), or (4) an Fe-O bond and an η(2)-C5H5 (Cp) ring (2e). No conclusive evidence for a gas-phase thermal reaction between ferrocene and ozone was observed under the conditions of these experiments. However, strong evidence for a surface-catalyzed thermal reaction was observed in merged-jet experiments wherein the gases were premixed before deposition. Surface-catalyzed ferrocene-ozone reaction products included a thin film of Fe2O3 observed on the walls of the merged tube as well as cyclopentadiene (C5H6), cyclopentadienone (C5H4O), and further oxidation products observed in the matrix. Possible mechanisms for both the photochemical and the thermal reactions are discussed.

13.
J Phys Chem A ; 119(2): 312-22, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25495369

ABSTRACT

The reactions of ozone with three bicyclic alkenes, α-pinene, norbornene, and norbornadiene, were studied by low-temperature (14 K), argon matrix isolation infrared spectroscopy including (18)O isotope-labeling studies. Theoretical calculations of some of the proposed reaction intermediates and products were carried out using the Gaussian 09 suite of programs, applying density functional theory (DFT), the B3LYP functional, and the 6-311G++(d,2p) basis set. In the α-pinene/ozone system, the thermal reaction between α-pinene and ozone was too slow to observe under the twin-jet or merged-jet deposition conditions of these experiments. However, red light (λ ≥ 600 nm) irradiation of the argon matrixes containing α-pinene and ozone caused new infrared peaks to appear that could be readily assigned to reaction products of α-pinene with O((3)P) resulting from ozone photolysis: α-pinene oxide (with an epoxide ring) and two isomeric ketones. Norbornene and norbornadiene were both found to react with ozone in the gas phase during twin-jet or merged-jet deposition of these mixtures with argon. New peaks observed in the infrared spectra were assigned to the primary ozonides, Criegee intermediates, and secondary ozonides of norbornene and norbornadiene, indicating that the bulk of these reactions proceeded via the "classic" Criegee mechanism for ozonolysis of alkenes. Calculated infrared frequencies and molecular energies support these conclusions. Ultraviolet irradiation of these mixtures resulted in complete decomposition of the early intermediates and the formation of acids, aldehydes, alcohols, carbon dioxide, and carbon monoxide. In any case, no evidence for "unusual" chemistry, prompted by the bicyclic nature of the reactants, was observed.

14.
J Org Chem ; 79(19): 9325-34, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25163813

ABSTRACT

Photolysis of vinylazide 1, which has a built-in acetophenone triplet sensitizer, in argon-saturated toluene results in azirine 2, whereas irradiation in oxygen-saturated toluene yields cyanide derivatives 3 and 4. Laser flash photolysis of azide 1 in argon-saturated acetonitrile shows formation of vinylnitrene 1c, which has a λmax at ∼300 nm and a lifetime of ∼1 ms. Vinylnitrene 1c is formed with a rate constant of 4.25 × 10(5) s(-1) from triplet 1,2-biradical 1b. Laser flash photolysis of 1 in oxygen-saturated acetonitrile results in 1c-O (λmax = 430 nm, τ ≈ 420 µs acetonitrile). Density functional theory (DFT) calculations were used to aid in the characterization of the intermediates formed upon irradiation of azide 1 and to validate the proposed mechanism for its photoreactivity.

15.
J Phys Chem A ; 118(45): 10433-47, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25046555

ABSTRACT

The irradiation of trans-vinylketones 1a-c yields the corresponding cis isomers 2a-c. Laser flash photolysis of 1a and 1b with 308 and 355 nm lasers results in their triplet ketones (T1K of 1), which rearrange to form triplet 1,2-biradicals 3a and 3b, respectively, whereas irradiation with a 266 nm laser produces their cis-isomers through singlet reactivity. Time-resolved IR spectroscopy of 1a with 266 nm irradiation confirmed that 2a is formed within the laser pulse. In comparison, laser flash photolysis of 1c with a 308 nm laser showed only the formation of 2c through singlet reactivity. At cryogenic temperatures, the irradiation of 1 also resulted in 2. DFT calculations were used to aid in the characterization of the excited states and biradicals involved in the cis-trans isomerization and to support the mechanism for the cis-trans isomerization on the triplet surface.

16.
J Org Chem ; 79(2): 653-63, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24364732

ABSTRACT

Photolysis of 3-methyl-2-phenyl-2H-azirine (1a) in argon-saturated acetonitrile does not yield any new products, whereas photolysis in oxygen-saturated acetonitrile yields benzaldehyde (2) by interception of vinylnitrene 5 with oxygen. Similarly, photolysis of 1a in the presence of bromoform allows the trapping of vinylnitrene 5, leading to the formation of 1-bromo-1-phenylpropan-2-one (4). Laser flash photolysis of 1a in argon-saturated acetonitrile (λ = 308 nm) results in a transient absorption with λ(max) at ~440 nm due to the formation of triplet vinylnitrene 5. Likewise, irradiation of 1a in cryogenic argon matrixes through a Pyrex filter results in the formation of ketene imine 11, presumably through vinylnitrene 5. In contrast, photolysis of 2-methyl-3-phenyl-2H-azirine (1b) in acetonitrile yields heterocycles 6 and 7. Laser flash photolysis of 1b in acetonitrile shows a transient absorption with a maximum at 320 nm due to the formation of ylide 8, which has a lifetime on the order of several milliseconds. Similarly, photolysis of 1b in cryogenic argon matrixes results in ylide 8. Density functional theory calculations were performed to support the proposed mechanism for the photoreactivity of 1a and 1b and to aid in the characterization of the intermediates formed upon irradiation.

17.
J Phys Chem A ; 117(20): 4174-82, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23638640

ABSTRACT

The ozonolysis reactions of 1,3- and 1,4-cyclohexadiene have been studied using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental and theoretical results demonstrate that these reactions predominantly do not follow the long-accepted Criegee mechanism. Rather, the reaction of O3 with 1,4-cyclohexadiene leads to the essentially barrierless formation of benzene, C6H6, and H2O3. These two species are then trapped in the same argon matrix cage and weakly interact to form a molecular complex. There is also evidence for the formation of a small amount of the primary ozonide as a minor product, formed through a transition state that is slightly higher in energy. The reaction of O3 with 1,3-cyclohexadiene follows two pathways, one of which is the Criegee mechanism through a low energy transition state leading to formation of the primary ozonide. In addition, with a similar barrier, ozone abstracts a single hydrogen from C5 while adding to C1, forming a hydroperoxy intermediate. This study presents two of the rare cases in which the Criegee mechanism is not the dominant pathway for the ozonolysis of an alkene as well as the first evidence for dehydrogenation of an alkene by ozone.


Subject(s)
Cyclohexenes/chemistry , Ozone/chemistry , Quantum Theory , Molecular Structure
18.
J Phys Chem A ; 116(8): 1914-22, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22295998

ABSTRACT

The matrix isolation technique has been combined with infrared spectroscopy and theoretical calculations to explore the reaction of (CH(3))(2)Cd with O(3) over a range of time scales and upon irradiation. During twin jet deposition, multiple novel product species were observed along with several stable "late" products. Following annealing of these matrices to 35 K, absorptions due to two novel product species increased in intensity. In addition, new bands appeared, indicating the formation of an additional product. Subsequent UV irradiation destroyed several of the initial products and produced a new photoproduct. On the basis of (18)O and (16,18)O spectroscopic data and theoretical calculations, the novel intermediates H(3)COCdCH(3), H(3)CCdCH(2)OH, H(3)COCdOOCH(3), and H(3)CCdCHO were identified. Merged jet deposition led to a number of stable "late" products, including H(2)CO, CH(3)OH, and C(2)H(6), identifications that were confirmed by (18)O substitution. Mechanistic inferences for this reaction are discussed.


Subject(s)
Organometallic Compounds/chemistry , Ozone/chemistry , Temperature , Photochemistry , Spectrophotometry, Infrared
19.
J Org Chem ; 76(20): 8177-88, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21894937

ABSTRACT

Photolysis of 1 in chloroform yielded 2 as the major product and a small quantity of 3. Laser flash photolysis demonstrated that upon irradiation, the first excited triplet state of the ketone (T(1K)) of 1 is formed and decayed to form radical 4, which has a λ(max) at 380 nm (τ = 2 µs). Radical 4 expelled a nitrogen molecule to yield imine radical 5 (λ(max) at 300 nm). Density functional theory (DFT) calculations showed that the transition state barrier for the formation of 5 is approximately 4 kcal/mol. In comparison, photolysis of 1 in argon matrices resulted in triplet nitrene 6, which was further characterized with (15)N and D isotope labeling and DFT calculations. Prolonged irradiation of 6 yields triplet imine nitrene 7.

20.
J Org Chem ; 76(24): 9934-45, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-21732657

ABSTRACT

The photoreactivity of (3-methyl-2H-azirin-2-yl)-phenylmethanone, 1, is wavelength-dependent (Singh et al. J. Am. Chem. Soc. 1972, 94, 1199-1206). Irradiation at short wavelengths yields 2P, whereas longer wavelengths produce 3P. Laser flash photolysis of 1 in acetonitrile using a 355 nm laser forms its triplet ketone (T(1K), broad absorption with λ(max) ~ 390-410 nm, τ ~ 90 ns), which cleaves and yields triplet vinylnitrene 3 (broad absorption with λ(max) ~ 380-400 nm, τ = 2 µs). Calculations (B3LYP/6-31+G(d)) reveal that T(1K) of 1 is located 67 kcal/mol above its ground state (S(0)) and has a long C-N bond (1.58 Å), and the calculated transition state to form 3 is only 1 kcal/mol higher in energy than T(1K) of 1. The calculations show that 3 has significant 1,3-carbon iminyl biradical character, which explains why 3 reacts efficiently with oxygen and decays by intersystem crossing to the singlet surface. Photolysis of 1 in argon matrixes at 14 K produced ketene imine 7, which presumably is formed from 3 intersystem crossing to 7. In comparison, photolysis of 1 in methanol with a 266 nm laser produces mainly ylide 2 (λ(max) ~ 380 nm, τ ~ 6 µs, acetonitrile), which decays to form 2P. Ylide 2 is formed via singlet reactivity of 1, and calculations show that the first singlet excited state of the azirine chromophore (S(1A)) is located 113 kcal/mol above its S(0) and that the singlet excited state of the ketone (S(1K)) is 85 kcal/mol. Furthermore, the transition state for cleaving the C-C bond in 1 to form 2 is located 49 kcal/mol above the S(0) of 1. Thus, we theorize that internal conversion of S(1A) to a vibrationally hot S(0) of 1 forms 2, whereas intersystem crossing from S(1K) to T(1K) results in 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...