Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 102(1): 122-31, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18698649

ABSTRACT

The effect of bubble-free oxygenation on the stability of a bi-enzymatic system with redox mediator regeneration for the conversion of lactose to lactobionic acid was investigated in a miniaturized reactor with bubbleless oxygenation. Earlier investigations of this biocatalytic oxidation have shown that the dispersive addition of oxygen can cause significant enzyme inactivation. In the process studied, the enzyme cellobiose dehydrogenase (CDH) oxidizes lactose at the C-1 position of the reducing sugar moiety to lactobionolactone, which spontaneously hydrolyzes to lactobionic acid. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was used as electron acceptor for CDH and was continuously regenerated (reoxidized) by laccase, a blue multi-copper oxidase. Oxygen served as the terminal electron acceptor of the reaction and was fully reduced to water by laccase. The overall mass transfer coefficient of the miniaturized reactor was determined at 30 and 45 degrees C; conversions were conducted both in the reaction-limited and diffusion-limited regime to study catalyst inactivation. The bubbleless oxygenation was successful in avoiding gas/liquid interface inactivation. It was also shown that the oxidized redox mediator plays a key role in the inactivation mechanism of the biocatalysts unobserved during previous studies.


Subject(s)
Biocatalysis , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Laccase/chemistry , Laccase/metabolism , Benzothiazoles , Bioreactors , Disaccharides/metabolism , Enzyme Stability , Lactose/metabolism , Oxidation-Reduction , Oxygen/metabolism , Sulfonic Acids/metabolism , Thiazoles/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...