Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 124, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34997013

ABSTRACT

Jatropha oil-based polyurethane acylate gel polymer electrolyte was mixed with different concentrations of tetrabutylammonium iodide salt (TBAI). The temperature dependences of ionic conductivity, dielectric modulus and relaxation time were studied in the range of 298 to 393 K. The highest ionic conductivity of (1.88 ± 0.020) × 10-4 Scm-1 at 298 K was achieved when the gel contained 30 wt% of TBAI and 2.06 wt% of I2. Furthermore, the study found that conductivity-temperature dependence followed the Vogel-Tammann Fulcher equation. From that, it could be clearly observed that 30 wt% TBAI indicated the lowest activation energy of 6.947 kJ mol-1. By using the fitting method on the Nyquist plot, the number density, mobility and diffusion coefficient of the charge carrier were determined. The charge properties were analysed using the dielectric permittivity, modulus and dissipation factor. Apart from this, the stoke drag and capacitance were determined.

2.
Polymers (Basel) ; 13(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883656

ABSTRACT

Recently, the antibacterial properties of Carvacrol (Carv) have been significantly reported. However, due to the unstable properties of Carv under various environment conditions, research approaches tailored towards its widespread and efficient use in various antimicrobial applications are scarce. Here, we discuss progress towards overcoming this challenge by utilising the encapsulation of Carv in gellan gum hydrogels to form thin films (GG-Carv) containing different concentrations of Carv (0.01-0.32 M). FTIR spectrum of GG-Carv revealed that both functional groups from GG and Carv existed. The carbon, hydrogen and nitrogen elemental analysis further supported the encapsulation of Carv with the changes in the element percentage of GG-Carv. Both swelling and degradation percentage increased with time and the decreasing patterns were observed as the concentration of Carv increased. In an antibacterial study, GG-Carv exhibited significant antibacterial activity against E. coli with the clear inhibition zone of 200 mm and the detection of bacterial growth showed enhancement with continuous decline throughout the study as compared to free-standing Carv.

3.
Polymers (Basel) ; 13(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34883717

ABSTRACT

In the effort to produce renewable and biodegradable polymers, more studies are being undertaken to explore environmentally friendly sources to replace petroleum-based sources. The oil palm industry is not only the biggest vegetable-oil producer from crops but also one the biggest producers of residual oil that cannot be used for edible purposes due to its low quality. In this paper the development of biopolymers from residual palm oil, residual palm oil with 10% jatropha oil, and residual palm oil with 10% algae oil as additives were explored. Polyols from the different oils were prepared by epoxydation with peroxyacetic acid and alcoholysis under the same conditions and further reacted with poly isocyanate to form polyurethanes. Epoxidized oils, polyols and polyurethanes were analyzed by different techniques such as TGA, DSC, DMA, FTIR and H-NMR. Overall, although the IV of algae oil is slightly higher than that of jatropha oil, the usage of algae oil as additive into the residual palm oil was shown to significantly increase the hard segments and thermal stability of the bio polyurethane compared to the polymer with jatropha oil. Furthermore, when algae oil was mixed with the residual palm oil, it was possible to identify phosphate groups in the polyol which might enhance the fire-retardant properties of the final biopolymer.

4.
Polymers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372093

ABSTRACT

Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products were named JPUA-TDI and JPUA-IPDI, respectively. The success of the stepwise reactions of the resins was confirmed using 1H nuclear magnetic resonance (NMR) spectroscopy to support the Fourier-transform infrared (FTIR) spectroscopy analysis that was reported in the previous study. For JPUA-TDI, the presence of a signal at 7.94 ppm evidenced the possible side reactions between urethane linkages with secondary amine that resulted in an aryl-urea group (Ar-NH-COO-). Meanwhile, the peak of 2.89 ppm was assigned to the α-position of methylene to the carbamate (-CH2NHCOO) group in the JPUA-IPDI. From the rheological study, JO and JPUA-IPDI in pure form were classified as Newtonian fluids, while JPUA-TDI showed non-Newtonian behaviour with pseudoplastic or shear thinning behaviour at room temperature. At elevated temperatures, the JO, JPUA-IPDI mixture and JPUA-TDI mixture exhibited reductions in viscosity and shear stress as the shear rate increased. The JO and JPUA-IPDI mixture maintained Newtonian fluid behaviour at all temperature ranges. Meanwhile, the JPUA-TDI mixture showed shear thickening at 25 °C and shear thinning at 40 °C, 60 °C and 80 °C. The master curve graph based on the shear rate for the JO, JPUA-TDI mixture and JPUA-IPDI mixture at 25 °C, 40 °C, 60 °C and 80 °C was developed as a fluid behaviour reference for future storage and processing conditions during the encapsulation process. The encapsulation process can be conducted to fabricate a self-healing coating based on a microcapsule triggered either by air or ultra-violet (UV) radiation.

5.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209121

ABSTRACT

The use of bio-based polymers in place of conventional polymers gives positives effects in the sense of reduction of environmental impacts and the offsetting of petroleum consumption. As such, in this study, jatropha oil was used to prepare epoxidized jatropha oil (EJO) by the epoxidation method. The EJO was used to prepare a shape memory polymer (SMP) by mixing it with the curing agent 4-methylhexahydrophthalic anhydride (MHPA) and a tetraethylammonium bromide (TEAB) catalyst. The resulting bio-based polymer is slightly transparent and brown in color. It has soft and flexible properties resulting from the aliphatic chain in jatropha oil. The functionality of SMP was analyzed by Fourier transform infrared (FTIR) spectroscopy analysis. The thermal behavior of the SMP was measured by thermogravimetric analysis (TGA), and it showed that the samples were thermally stable up to 150 °C. Moreover, the glass transition temperature characteristic was obtained using differential scanning calorimetry (DSC) analysis. The shape memory recovery behavior was investigated. Overall, EJO/MHPA was prepared by a relatively simple method and showed good shape recovery properties.

6.
Polymers (Basel) ; 13(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807622

ABSTRACT

Nowadays, there is a significant trend away from solvent-based polyurethane systems towards waterborne polyurethane dispersions due to government regulations requiring manufacturers to lower total volatile organic compounds, as well as consumer preference for more environmentally friendly products. In this work, a renewable vegetable oil-based polyol derived from jatropha oil was polymerized with isophorone diisocyanate and dimethylol propionic acid to produce anionic waterborne polyurethane dispersion. Free standing films with up to 62 wt.% bio-based content were successfully produced after evaporation of water from the jatropha oil-based waterborne polyurethane (JPU) dispersion, which indicated good film formation. The chemical and thermo-mechanical properties of the JPU films were characterized. By increasing the OH numbers of polyol from 161 mgKOH/g to 217 mgKOH/g, the crosslinking density of the JPU was significantly increased, which lead to a better storage modulus and improved hydrophobicity. Overall, JPU produced from polyol having OH number of 217 mgKOH/g appears to be a promising product for application as a binder for wood and decorative coatings.

7.
Polymers (Basel) ; 12(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171889

ABSTRACT

New environmentally friendly plasticized poly(lactic acid) (PLA) kenaf biocomposites were obtained through a melt blending process from a combination of epoxidized jatropha oil, a type of nonedible vegetable oil material, and renewable plasticizer. The main objective of this study is to investigate the effect of the incorporation of epoxidized jatropha oil (EJO) as a plasticizer and alkaline treatment of kenaf fiber on the thermal properties of PLA/Kenaf/EJO biocomposites. Kenaf fiber was treated with 6% sodium hydroxide (NaOH) solution for 4 h. The thermal properties of the biocomposites were analyzed using a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It must be highlighted that the addition of EJO resulted in a decrease of glass transition temperature which aided PLA chain mobility in the blend as predicted. TGA demonstrated that the presence of treated kenaf fiber together with EJO in the blends reduced the rate of decomposition of PLA and enhanced the thermal stability of the blend. The treatment showed a rougher surface fiber in scanning electron microscopy (SEM) micrographs and had a greater mechanical locking with matrix, and this was further supported with Fourier-transform infrared spectroscopy (FTIR) analysis. Overall, the increasing content of EJO as a plasticizer has improved the thermal properties of PLA/Kenaf/EJO biocomposites.

8.
Polymers (Basel) ; 12(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635384

ABSTRACT

Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm-1, 1718 cm-1 and 3369 cm-1 while acrylate peaks were detected at 815 cm-1 and 1663 cm-1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals.

9.
ACS Omega ; 5(24): 14267-14274, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596563

ABSTRACT

Biobased polymers are useful materials in substituting conventional petroleum-derived polymers because of their good properties, ready availability, and abundance in nature. This study reports a new jatropha oil-based gel polymer electrolyte (GPE) for use in dye-sensitized solar cells (DSSCs). The GPE was prepared by mixing jatropha oil-based polyurethane acrylate (PUA) with different concentrations of lithium iodide (LiI). The GPE was characterized by infrared spectroscopy, thermal analysis, lithium nuclear magnetic resonance analysis, electrochemical analysis, and photocurrent conversion efficiency. The highest room-temperature ionic conductivity of 1.88 × 10-4 S cm-1 was obtained at 20 wt % of LiI salt. Additionally, the temperature-dependent ionic conductivity of the GPE exhibited Arrhenius behavior with an activation energy of 0.42 eV and a pre-exponential factor of 1.56 × 103 S cm-1. The electrochemical stability study showed that the PUA GPE was stable up to 2.35 V. The thermal stability of the gel electrolyte showed an improvement after the addition of the salt, suggesting a strong intermolecular interaction between PUA and Li, which leads to polymer-salt complexation, as proven by Fourier transform infrared spectroscopy analysis. A DSSC has been assembled using the optimum ionic conductivity gel electrolyte which indicated 1.2% efficiency under 1 sun condition. Thus, the jatropha oil-based GPE demonstrated favorable properties that make it a promising alternative to petroleum-derived polymer electrolytes in DSSCs.

10.
Materials (Basel) ; 13(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059600

ABSTRACT

With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications. A range of bio-based polymers are presented by focusing on the source, the general method of preparation, and the properties of the polymer electrolyte system, specifically with reference to the ionic conductivity. Some major applications of bio-based polymer electrolytes are discussed. This review examines the past studies and future prospects of these materials in the polymer electrolyte field.

11.
Polymers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396925

ABSTRACT

In this paper, we report the preparation of bio-based polyurethane (PU) from renewable vegetable oil. The PU was synthesized through the reaction between jatropha oil-based polyol and isocyanate in a one-shot method. Then, lithium perchlorate (LiClO4) salt was added to the polyurethane system to form an electrolyte film via a solution casting technique. The solid polymer electrolyte was characterized through several techniques such as nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), electrochemical studies, thermal studies by differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The NMR analysis confirmed that the polyurethane was successfully synthesized and the intermolecular reaction had occurred in the electrolytes system. The FTIR results show the shifting of the carbonyl group (C=O), ether and ester group (C-O-C), and amine functional groups (N-H) in PU-LiClO4 electrolytes compared to the blank polyurethane, which suggests that interaction occurred between the oxygen and nitrogen atom and the Li+ ion as they acted as electron donors in the electrolytes system. DSC analysis shows a decreasing trend in glass transition temperature, Tg and melting point, Tm of the polymer electrolyte as the salt content increases. Further, DMA analysis shows similar behavior in terms of Tg. The ionic conductivity increased with increasing salt content until the optimum value. The dielectric analysis reveals that the highest conducting electrolyte has the lowest relaxation time. The electrochemical behavior of the PU electrolytes is in line with the Tg result from the thermal analysis.

12.
Polymers (Basel) ; 10(10)2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30961067

ABSTRACT

Polyurethane acrylate (PUA) from vegetable oil has been synthesized and prepared for solid polymer electrolyte. Polyol has been end-capped with Toluene 2,4-Diisocyanate (TDI) followed by hydroxylethylmethylacrylate (HEMA) in a urethanation process to produce PUA. The mixtures were cured to make thin polymeric films under UV radiation to produce excellent cured films which exhibit good thermal stability and obtain high ionic conductivity value. 3 to 15 wt. % of ethylene carbonate (EC) mixed with 25 wt. % LiClO4 was added to PUA to obtain PUA electrolyte systems. PUA modified with plasticizer EC 9 wt. % achieved the highest conductivity of 7.86 × 10-4 S/cm, and relatively improved the linear sweep voltammetry, transference number and dielectric properties. Fourier Transform Infrared Spectroscopy (FTIR) and dielectric analysis were presented. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), followed by X-ray Diffraction (XRD) and morphology have been studied. The addition of plasticizer to the polyurethane acrylate shows significant improvement in terms of the conductivity and performance of the polymer electrolyte.

13.
Molecules ; 22(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353677

ABSTRACT

A low cost, abundant, and renewable vegetable oil source has been gaining increasing attention due to its potential to be chemically modified to polyol and thence to become an alternative replacement for the petroleum-based polyol in polyurethane production. In this study, jatropha oil-based polyol (JOL) was synthesised from non-edible jatropha oil by a two steps process, namely epoxidation and oxirane ring opening. In the first step, the effect of the reaction temperature, the molar ratio of the oil double bond to formic acid, and the reaction time on the oxirane oxygen content (OOC) of the epoxidised jatropha oil (EJO) were investigated. It was found that 4.3% OOC could be achieved with a molar ratio of 1:0.6, a reaction temperature of 60 °C, and 4 h of reaction. Consequently, a series of polyols with hydroxyl numbers in the range of 138-217 mgKOH/g were produced by oxirane ring opening of EJOs, and the physicochemical and rheological properties were studied. Both the EJOs and the JOLs are liquid and have a number average molecular weight (Mn) in the range of 834 to 1457 g/mol and 1349 to 2129 g/mol, respectively. The JOLs exhibited Newtonian behaviour, with a low viscosity of 430-970 mPas. Finally, the JOL with a hydroxyl number of 161 mgKOH/g was further used to synthesise aqueous polyurethane dispersion, and the urethane formation was successfully monitored by Fourier Transform Infrared (FTIR).


Subject(s)
Jatropha/chemistry , Plant Oils/chemistry , Polymers/chemical synthesis , Catalysis , Polymers/chemistry , Polyurethanes/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...