Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 8(8)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111730

ABSTRACT

Catching is the first step in the pre-slaughter chain for broiler chickens. The process may be detrimental for animal welfare due to the associated handling. The aim of this pilot study was to compare two different methods to manually catch broilers: Catching the broilers by two legs and carrying them inverted (LEGS) or catching the broilers under the abdomen and carrying them in an upright position (UPRIGHT). Wing and leg fractures upon arrival at the abattoir, animal density in the drawers, birds on their back, broilers dead-on-arrival and time to fill the transport modules were investigated. The results showed that mean crating time was shorter in the UPRIGHT method (p = 0.007). There was a tendency for more wing fractures in broilers caught by the LEGS (p = 0.06). The animal density in the drawers was lower and with a smaller range in the UPRIGHT method (p = 0.022). The results indicate that catching the broilers under the abdomen in an upright position may improve broiler welfare in terms of fewer wing fractures, more consistent stocking density in drawers and potentially reduced loading time.

2.
Int J Food Microbiol ; 106(3): 313-7, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16263188

ABSTRACT

The Norwegian Action Plan against Campylobacter in broilers was implemented in May 2001 with the objective of reducing human exposure to Campylobacter through Norwegian broilers. From each flock, samples collected at the farm about one week prior to slaughter, and then again at the slaughter plant, are examined for the presence of Campylobacter. All farmers with positive flocks are followed up with bio-security advice. Sampling of broiler products at retail level is also included in the Action Plan. The aim of this study was to evaluate the existing sampling and culturing methods of the Norwegian Action Plan against Campylobacter in broilers. The material collected was pooled faecal samples, pooled cloacae samples and caecae samples from individuals. The highest number of positives, from culturing of the pooled faecal samples, the pooled cloacae swabs and the caecae swabs from individuals, were obtained at incubation temperature 41.5 degrees C. When comparing the results at incubation temperature 37 and 41.5 degrees C, the faecal samples from the farms demonstrated a high concordance, with a kappa value of 0.88. The results from culturing cloacae swabs and caecae samples from slaughter plant level at two temperatures did not agree very well with a kappa value of 0.21 and moderate value of 0.57, respectively, but were both disconcordant at a level of 0.05. Modelling farm level data indicated that if increasing the number of pooled samples per flock from two (in existing regime) to three, the flock sensitivity increases from 89% to 95%. Modelling of slaughter plant data indicated that three pooled cloacae swabs are needed to identify 90% of the positive flocks. The results from the modelling of caecae data indicated that samples from seven individuals are sufficient to identify 90% of the positive flocks and caecae samples could thus be an alternative to cloacae sampling at slaughter plant level.


Subject(s)
Campylobacter/isolation & purification , Chickens/microbiology , Colony Count, Microbial/veterinary , Food Contamination/analysis , Meat/microbiology , Animals , Campylobacter/growth & development , Cecum/microbiology , Cloaca/microbiology , Colony Count, Microbial/methods , Consumer Product Safety , Feces/microbiology , Food Contamination/prevention & control , Food-Processing Industry/methods , Food-Processing Industry/standards , Humans , Norway , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...