Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Rep Prog Phys ; 86(5)2023 04 04.
Article in English | MEDLINE | ID: mdl-36944245

ABSTRACT

This review is about statistical genetics, an interdisciplinary topic between statistical physics and population biology. The focus is on the phase ofquasi-linkage equilibrium(QLE). Our goals here are to clarify under which conditions the QLE phase can be expected to hold in population biology and how the stability of the QLE phase is lost. The QLE state, which has many similarities to a thermal equilibrium state in statistical mechanics, was discovered by M Kimura for a two-locus two-allele model, and was extended and generalized to the global genome scale byNeher&Shraiman (2011). What we will refer to as the Kimura-Neher-Shraiman theory describes a population evolving due to the mutations, recombination, natural selection and possibly genetic drift. A QLE phase exists at sufficiently high recombination rate (r) and/or mutation ratesµwith respect to selection strength. We show how in QLE it is possible to infer the epistatic parameters of the fitness function from the knowledge of the (dynamical) distribution of genotypes in a population. We further consider the breakdown of the QLE regime for high enough selection strength. We review recent results for the selection-mutation and selection-recombination dynamics. Finally, we identify and characterize a new phase which we call the non-random coexistence where variability persists in the population without either fixating or disappearing.


Subject(s)
Models, Genetic , Selection, Genetic , Linkage Disequilibrium , Mutation , Genotype , Genetics, Population
2.
Phys Rev E ; 106(4-1): 044409, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397507

ABSTRACT

We use direct coupling analysis (DCA) to determine epistatic interactions between loci of variability of the SARS-CoV-2 virus, segmenting genomes by month of sampling. We use full-length, high-quality genomes from the GISAID repository up to October 2021 for a total of over 3 500 000 genomes. We find that DCA terms are more stable over time than correlations but nevertheless change over time as mutations disappear from the global population or reach fixation. Correlations are enriched for phylogenetic effects, and in particularly statistical dependencies at short genomic distances, while DCA brings out links at longer genomic distance. We discuss the validity of a DCA analysis under these conditions in terms of a transient auasilinkage equilibrium state. We identify putative epistatic interaction mutations involving loci in spike.

3.
Proc Natl Acad Sci U S A ; 117(49): 31519-31526, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33203681

ABSTRACT

Genome-wide epistasis analysis is a powerful tool to infer gene interactions, which can guide drug and vaccine development and lead to deeper understanding of microbial pathogenesis. We have considered all complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) repository until four different cutoff dates, and used direct coupling analysis together with an assumption of quasi-linkage equilibrium to infer epistatic contributions to fitness from polymorphic loci. We find eight interactions, of which three are between pairs where one locus lies in gene ORF3a, both loci holding nonsynonymous mutations. We also find interactions between two loci in gene nsp13, both holding nonsynonymous mutations, and four interactions involving one locus holding a synonymous mutation. Altogether, we infer interactions between loci in viral genes ORF3a and nsp2, nsp12, and nsp6, between ORF8 and nsp4, and between loci in genes nsp2, nsp13, and nsp14. The paper opens the prospect to use prominent epistatically linked pairs as a starting point to search for combinatorial weaknesses of recombinant viral pathogens.


Subject(s)
Epistasis, Genetic/genetics , Genes, Viral/genetics , SARS-CoV-2/genetics , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Exoribonucleases/genetics , Genome, Viral/genetics , Humans , Methyltransferases/genetics , RNA Helicases/genetics , Selection, Genetic/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins/genetics
4.
Phys Rev E ; 102(1-1): 012136, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795033

ABSTRACT

We consider a quantum system such as a qubit, interacting with a bath of fermions as in the Fröhlich polaron model. The interaction Hamiltonian is thus linear in the system variable and quadratic in the fermions. Using the recently developed extension of Feynman-Vernon theory to nonharmonic baths we evaluate quadratic and the quartic terms in the influence action. We find that for this model the quartic term vanish by symmetry arguments. Although the influence of the bath on the system is of the same form as from bosonic harmonic oscillators up to effects to sixth order in the system-bath interaction, the temperature dependence is nevertheless rather different, unless rather contrived models are considered.

5.
Phys Rev E ; 101(5-1): 052116, 2020 May.
Article in English | MEDLINE | ID: mdl-32575222

ABSTRACT

We study the heat current flowing between two baths consisting of harmonic oscillators interacting with a qubit through a spin-boson coupling. An explicit expression for the generating function of the total heat flowing between the right and left baths is derived by evaluating the corresponding Feynman-Vernon path integral by performing the noninteracting blip approximation (NIBA). We recover the known expression, obtained by using the polaron transform. This generating function satisfies the Gallavotti-Cohen fluctuation theorem, both before and after performing the NIBA. We also verify that the heat conductance is proportional to the variance of the heat current, retrieving the well-known fluctuation dissipation relation. Finally, we present numerical results for the heat current.

6.
Phys Rev E ; 101(5-1): 052409, 2020 May.
Article in English | MEDLINE | ID: mdl-32575265

ABSTRACT

The genetic composition of a naturally developing population is considered as due to mutation, selection, genetic drift, and recombination. Selection is modeled as single-locus terms (additive fitness) and two-loci terms (pairwise epistatic fitness). The problem is posed to infer epistatic fitness from population-wide whole-genome data from a time series of a developing population. We generate such data in silico and show that in the quasilinkage equilibrium phase of Kimura, Neher, and Shraiman, which pertains at high enough recombination rates and low enough mutation rates, epistatic fitness can be quantitatively correctly inferred using inverse Ising-Potts methods.


Subject(s)
Genetic Fitness , Genomics , Epistasis, Genetic/genetics , Models, Genetic , Mutation Rate , Recombination, Genetic/genetics
7.
RNA ; 26(4): 382-395, 2020 04.
Article in English | MEDLINE | ID: mdl-31992590

ABSTRACT

Transcription initiation and RNA processing govern gene expression and enable bacterial adaptation by reshaping the RNA landscape. The aim of this study was to simultaneously observe these two fundamental processes in a transcriptome responding to an environmental signal. A controlled σE system in E. coli was coupled to our previously described tagRNA-seq method to yield process kinetics information. Changes in transcription initiation frequencies (TIF) and RNA processing frequencies (PF) were followed using 5' RNA tags. Changes in TIF showed a binary increased/decreased pattern that alternated between transcriptionally activated and repressed promoters, providing the bacterial population with transcriptional oscillation. PF variation fell into three categories of cleavage activity: (i) constant and independent of RNA levels, (ii) increased once RNA has accumulated, and (iii) positively correlated to changes in TIF. This work provides a comprehensive and dynamic view of major events leading to transcriptomic reshaping during bacterial adaptation. It unveils an interplay between transcription initiation and the activity of specific RNA cleavage sites. This study utilized a well-known genetic system to analyze fundamental processes and can serve as a blueprint for comprehensive studies that exploit the RNA metabolism to decipher and understand bacterial gene expression control.


Subject(s)
Adaptation, Physiological , RNA, Bacterial/genetics , RNA/genetics , Transcription Initiation, Genetic , Escherichia coli , RNA/metabolism , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Bacterial/metabolism
8.
Phys Rev Lett ; 123(23): 230602, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868433

ABSTRACT

We study local search algorithms to solve instances of the random k-satisfiability problem, equivalent to finding (if they exist) zero-energy ground states of statistical models with disorder on random hypergraphs. It is well known that the best such algorithms are akin to nonequilibrium processes in a high-dimensional space. In particular, algorithms known as focused, and which do not obey detailed balance, outperform simulated annealing and related methods in the task of finding the solution to a complex satisfiability problem, that is to find (exactly or approximately) the minimum in a complex energy landscape. A physical question of interest is if the dynamics of these processes can be well predicted by the well-developed theory of equilibrium Gibbs states. While it has been known empirically for some time that this is not the case, an alternative systematic theory that does so has been lacking. In this Letter we introduce such a theory based on the recently developed technique of cavity master equations and test it on the paradigmatic random 3-satisfiability problem. Our theory predicts the qualitative form of the phase boundary between the satisfiable (SAT) and unsatisfiable (UNSAT) region of the phase diagram where the numerics of a focused Metropolis search and cavity master equation cannot be distinguished.

9.
Phys Rev E ; 100(3-2): 039902, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639933

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.97.062117.

10.
Phys Rev E ; 99(4-1): 042130, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108691

ABSTRACT

In this paper we consider the thermal power of a heat flow through a qubit between two baths. The baths are modeled as a set of harmonic oscillators initially at equilibrium, at two temperatures. Heat is defined as the change of energy of the cold bath, and thermal power is defined as expected heat per unit time, in the long-time limit. The qubit and the baths interact as in the spin-boson model, i.e., through qubit operator σ_{z}. We compute thermal power in an approximation analogous to a "noninteracting blip" (NIBA) and express it in the polaron picture as products of correlation functions of the two baths, and a time derivative of a correlation function of the cold bath. In the limit of weak interaction we recover known results in terms of a sum of correlation functions of the two baths, a correlation functions of the cold bath only, and the energy split.

11.
Phys Biol ; 16(2): 026002, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30605896

ABSTRACT

Direct coupling analysis (DCA) is a now widely used method to leverage statistical information from many similar biological systems to draw meaningful conclusions on each system separately. DCA has been applied with great success to sequences of homologous proteins, and also more recently to whole-genome population-wide sequencing data. We here argue that the use of DCA on the genome scale is contingent on fundamental issues of population genetics. DCA can be expected to yield meaningful results when a population is in the quasi-linkage equilibrium (QLE) phase studied by Kimura and others, but not, for instance, in a phase of clonal competition. We discuss how the exponential (Potts model) distributions emerge in QLE, and compare couplings to correlations obtained in a study of about 3000 genomes of the human pathogen Streptococcus pneumoniae.


Subject(s)
Epistasis, Genetic , Genome, Bacterial , Models, Genetic , Models, Statistical , Streptococcus pneumoniae/genetics , Epigenomics
12.
Phys Rev E ; 97(6-1): 062117, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011538

ABSTRACT

This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015)NJOPFM1367-263010.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017)ENTRFG1099-430010.3390/e19110595].

13.
Phys Rev E ; 97(5-1): 050103, 2018 May.
Article in English | MEDLINE | ID: mdl-29906924

ABSTRACT

We introduce an alternative solution to Glauber multispin dynamics on random graphs. The solution is based on the recently introduced cavity master equation (CME), a time-closure turning the, in principle, exact dynamic cavity method into a practical method of analysis and of fast simulation. Running CME once is of comparable computational complexity as one Monte Carlo run on the same problem. We show that CME correctly models the ferromagnetic p-spin Glauber dynamics from high temperatures down to and below the spinoidal transition. We also show that CME allows an alternative exploration of the low-temperature spin-glass phase of the model.

14.
Phys Rev E ; 97(4-1): 042112, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758600

ABSTRACT

Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

15.
Nucleic Acids Res ; 45(5): 2746-2756, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28426097

ABSTRACT

Polyadenylation is thought to be involved in the degradation and quality control of bacterial RNAs but relatively few examples have been investigated. We used a combination of 5΄-tagRACE and RNA-seq to analyze the total RNA content from a wild-type strain and from a poly(A)polymerase deleted mutant. A total of 178 transcripts were either up- or down-regulated in the mutant when compared to the wild-type strain. Poly(A)polymerase up-regulates the expression of all genes related to the FliA regulon and several previously unknown transcripts, including numerous transporters. Notable down-regulation of genes in the expression of antigen 43 and components of the type 1 fimbriae was detected. The major consequence of the absence of poly(A)polymerase was the accumulation of numerous sRNAs, antisense transcripts, REP sequences and RNA fragments resulting from the processing of entire transcripts. A new algorithm to analyze the position and composition of post-transcriptional modifications based on the sequence of unencoded 3΄-ends, was developed to identify polyadenylated molecules. Overall our results shed new light on the broad spectrum of action of polyadenylation on gene expression and demonstrate the importance of poly(A) dependent degradation to remove structured RNA fragments.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Polyadenylation , Polynucleotide Adenylyltransferase/metabolism , RNA, Bacterial/metabolism , Bacterial Toxins/biosynthesis , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Genome, Bacterial , Mutation , Polynucleotide Adenylyltransferase/genetics , RNA, Antisense/metabolism , RNA, Messenger/metabolism , RNA, Untranslated/metabolism
16.
PLoS Genet ; 13(2): e1006508, 2017 02.
Article in English | MEDLINE | ID: mdl-28207813

ABSTRACT

Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly enhances the future potential of epistasis analysis for systems biology, and can complement genome-wide association studies as a means of formulating hypotheses for targeted experimental work.


Subject(s)
Epistasis, Genetic , Selection, Genetic/genetics , Streptococcus pneumoniae/genetics , Streptococcus pyogenes/genetics , beta-Lactam Resistance/genetics , Aminoacyltransferases/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Gene Regulatory Networks/genetics , Genetics, Population , Genome, Bacterial/genetics , Genomics , Genotype , Humans , Microbial Sensitivity Tests , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/genetics , Peptidyl Transferases/genetics , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/pathogenicity , beta-Lactams/metabolism
17.
Phys Rev E ; 96(3-1): 032140, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29347012

ABSTRACT

A particle with internal unobserved states diffusing in a force field will generally display effective advection-diffusion. The drift velocity is proportional to the mobility averaged over the internal states, or effective mobility, while the effective diffusion has two terms. One is of the equilibrium type and satisfies an Einstein relation with the effective mobility while the other is quadratic in the applied force. In this contribution we present two new methods to obtain these results, on the one hand using large deviation techniques and on the other by a multiple-scale analysis, and compare the two. We consider both systems with discrete internal states and continuous internal states. We show that the auxiliary equations in the multiple-scale analysis can also be derived in second-order perturbation theory in a large deviation theory of a generating function (discrete internal states) or generating functional (continuous internal states). We discuss that measuring the two components of the effective diffusion give a way to determine kinetic rates from only first and second moments of the displacement in steady state.

18.
Phys Rev E ; 93(6): 062147, 2016 06.
Article in English | MEDLINE | ID: mdl-27415248

ABSTRACT

We consider coupled diffusions in n-dimensional space and on a compact manifold and the resulting effective advective-diffusive motion on large scales in space. The effective drift (advection) and effective diffusion are determined as a solvability conditions in a multiscale analysis. As an example, we consider coupled diffusions in three-dimensional space and on the group manifold SO(3) of proper rotations, generalizing results obtained by H. Brenner [J. Colloid Interface Sci. 80, 548 (1981)JCISA50021-979710.1016/0021-9797(81)90214-9]. We show in detail how the analysis can be conveniently carried out using local charts and invariance arguments. As a further example, we consider coupled diffusions in two-dimensional complex space and on the group manifold SU(2). We show that although the local operators may be the same as for SO(3), due to the global nature of the solvability conditions the resulting diffusion will differ and generally be more isotropic.

20.
Phys Biol ; 13(2): 026004, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27043075

ABSTRACT

Minimal absent words (MAW) of a genomic sequence are subsequences that are absent themselves but the subwords of which are all present in the sequence. The characteristic distribution of genomic MAWs as a function of their length has been observed to be qualitatively similar for all living organisms, the bulk being rather short, and only relatively few being long. It has been an open issue whether the reason behind this phenomenon is statistical or reflects a biological mechanism, and what biological information is contained in absent words. In this work we demonstrate that the bulk can be described by a probabilistic model of sampling words from random sequences, while the tail of long MAWs is of biological origin. We introduce the concept of a core of a MAW, which are sequences present in the genome and closest to a given MAW. We show that in E. faecalis, E. coli and yeast the cores of the longest MAWs, which exist in two or more copies, are located in highly conserved regions the most prominent example being ribosomal RNAs. We also show that while the distribution of the cores of long MAWs is roughly uniform over these genomes on a coarse-grained level, on a more detailed level it is strongly enhanced in 3' untranslated regions (UTRs) and, to a lesser extent, also in 5' UTRs. This indicates that MAWs and associated MAW cores correspond to fine-tuned evolutionary relationships, and suggest that they can be more widely used as markers for genomic complexity.


Subject(s)
Genome , Genomics/methods , Algorithms , Animals , Base Sequence , Escherichia/genetics , Escherichia coli/genetics , Humans , Models, Genetic , Sequence Analysis, DNA , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...