Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687040

ABSTRACT

The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive reactions: (i) formation of a weak molecular complex between the reagents; (ii) an intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent of iminoborane; and (iii) a formal 1,3-hydrogen shift yielding the final fused aromatic compound. The two last steps correspond to a Friedel-Crafts acylation reaction, the product of the second reaction being the tetrahedral intermediate of an electrophilic aromatic substitution reaction. However, the presence of the imino group adjacent to the aromatic ring strongly stabilizes the corresponding intermediate, being the reaction product when the ortho positions are occupied by t-butyl substituents. This domino reaction shows a great similitude with the Brønsted acid catalyzed Povarov reaction. Although N-phenyl iminoborane can experience a formal [2+2] cycloaddition reaction with benzaldehyde, its higher activation Gibbs free energy compared to the intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent, 6.6 kcal·mol-1, prevents the formation of the formal [2+2] cycloadduct. The present MEDT study provides a different vision of the molecular mechanism of these reactions based on the electron density.

2.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198640

ABSTRACT

The ionic Diels-Alder (I-DA) reactions of a series of six iminium cations with cyclopentadiene have been studied within the Molecular Electron Density Theory (MEDT). The superelectrophilic character of iminium cations, ω > 8.20 eV, accounts for the high reactivity of these species participating in I-DA reactions. The activation energies are found to be between 13 and 20 kcal·mol-1 lower in energy than those associated with the corresponding Diels-Alder (DA) reactions of neutral imines. These reactions are low endo selective as a consequence of the cationic character of the TSs, but highly regioselective. Solvents have poor effects on the relative energies, and an unappreciable effect on the geometries. In acetonitrile, the activation energies increase slightly as a consequence of the better solvation of the iminium cations than the cationic TSs. Electron localization function (ELF) topological analysis of the bonding changes along the I-DA reactions shows that they are very similar to those in polar DA reactions. The present MEDT study establishes that the global electron density transfer (GEDT) taking place at the TSs of I-DA reactions, and not steric (Pauli) repulsions such as have been recently proposed, are responsible for the features of these types of DA reactions.

3.
Dalton Trans ; 48(9): 2881-2885, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30734796

ABSTRACT

Systematic analyses of the composition and size of metal-organic frameworks built with Zn4O and terephthalic/amino-terephthalic acid mixtures, together with a kinetic assay, reveal how these ligands behave differently, which reveals the complexity of crystal growth in these frameworks and the ability to tune it on purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...