Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Procedia CIRP ; 115: 83-88, 2022.
Article in English | MEDLINE | ID: mdl-36373025

ABSTRACT

The COVID-19 pandemic and crises like the Ukraine-Russia war have led to numerous restrictions for industrial manufacturing due to interrupted supply chains, staff absences due to illness or quarantine measures, and order situations that changed significantly at short notice. These influences have exposed that it is crucial to address the issue of manufacturing resilience in the context of current disruptions. This can be plausibly guaranteed by subjecting the ML model of a manufacturing system to attacks deliberately designed to fool its prediction. Such attacks can provide useful insights into properties that can increase resilience of manufacturing systems.

2.
Biointerphases ; 13(5): 051003, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30336679

ABSTRACT

Bacteria in flowing media are exposed to shear forces exerted by the fluid. Before a biofilm can be formed, the bacteria have to attach to a solid surface and have to resist these shear forces. Here, the authors determined dislodgement forces of single Paracoccus seriniphilus bacteria by means of lateral force microscopy. The first measurement set was performed on very flat glass and titanium (both as very hydrophilic samples with water contact angles below 20°) as well as highly oriented pyrolytic graphite (HOPG) and steel surfaces (both as more hydrophobic surfaces in the context of biological interaction with water contact angles above 50°). The different surfaces also show different zeta potentials in the range between -18 and -108 mV at the measurement pH of 7. The second set comprised titanium with different RMS (root mean square) roughness values from a few nanometers up to 22 nm. Lateral forces between 0.5 and 3 nN were applied. For Paracoccus seriniphilus, the authors found as a general trend that the surface energy of the substrate at comparable roughness determines the detachment process. The surface energy is inversely proportional to the initial adhesion forces of the bacterium with the surface. The higher the surface energy (and the lower the initial adhesion force) is, the easier the dislodgement of the bacteria happens. In contrast, electrostatics play only a secondary role in the lateral dislodgement of the bacteria and may come only into play if surface energies are the same. Furthermore, the surface chemistry (glass, titanium, and steel as oxidic surfaces and HOPG as a nonoxidic surface) seems to play an important role because HOPG does not completely follow the above mentioned general trend found for the oxide covered surfaces. In addition, the roughness of the substrates (made of the same material) is limiting the lateral dislodgement of the bacteria. All examined structures with RMS roughness of about 8-22 nm on titanium prevent the bacteria from the lateral dislodgement compared to polished titanium with an RMS roughness of about 3 nm.


Subject(s)
Bacterial Adhesion , Environmental Microbiology , Paracoccus/physiology , Stress, Mechanical , Carbon , Glass , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Steel , Surface Tension , Titanium
3.
Biointerphases ; 12(5): 05G606, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29108418

ABSTRACT

The bacterial attachment to surfaces is the first step of biofilm formation. This attachment is governed by adhesion forces which act between the bacterium and the substrate. Such forces can be measured by single cell force spectroscopy, where a single bacterium is attached to a cantilever of a scanning force microscope, and force-distance curves are measured. For the productive sea-water bacterium Paracoccus seriniphilus, pH dependent measurements reveal the highest adhesion forces at pH 4. Adhesion forces measured at salinities between 0% and 4.5% NaCl are in general higher for higher salinity. However, there is an exception for 0.9% where a higher adhesion force was measured than expected. These results are in line with zeta potential measurements of the bacterium, which also show an exceptionally low zeta potential at 0.9% NaCl. In the absence of macromolecular interactions, the adhesion forces are thus governed by (unspecific) electrostatic interactions, which can be adjusted by pH and ionic strength. It is further shown that microstructures on the titanium surface increase the adhesion force. Growth medium reduces the interaction forces dramatically, most probably through macromolecular bridging.


Subject(s)
Bacterial Adhesion , Paracoccus/physiology , Seawater/chemistry , Seawater/microbiology , Surface Properties , Titanium , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Salinity , Single-Cell Analysis
4.
Micromachines (Basel) ; 8(9)2017 Aug 24.
Article in English | MEDLINE | ID: mdl-30400451

ABSTRACT

Current demands for flexible, individual microstructures in high quality result in high requirements for micro tools. As the tool size defines the minimum structure size, ultra-small tools are needed. To achieve tool diameters of 50 µm and lower, we investigate the complete manufacturing chain of micro machining. From the development of the machine tools and components needed to produce and apply the micro tools, the micro tools themselves, as well as the micro machining processes. Machine tools are developed with the possibility of producing the micro geometry (cutting edge design) of micro tools as well as plating processes to produce super abrasive micro grinding tools. Applying these setups, we are able to produce ultra-small micro grinding and micro milling tools with typical diameters of 50 µm and down to 4 µm. However, the application of such tools is very challenging. The article presents possibilities and limitations in manufacturing the micro tools themselves as well as microstructures made with these tools. A special emphasis will be on the influence of the tool substrate in micro milling and grain sizes in micro grinding.

5.
Biointerphases ; 10(1): 019007, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25708637

ABSTRACT

Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.


Subject(s)
Biofilms/drug effects , Paracoccus/drug effects , Paracoccus/physiology , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/physiology , Titanium/chemistry , Titanium/isolation & purification , Biofilms/growth & development , Bioreactors/microbiology , Microscopy, Confocal , Microscopy, Fluorescence , Oxygen/metabolism , Paracoccus/metabolism , Photoelectron Spectroscopy , Plasma Gases , Pseudomonas fluorescens/metabolism , Titanium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...