Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298586

ABSTRACT

Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Ferroptosis , Neurodegenerative Diseases , Humans , Iron/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
2.
Pharmacol Res ; 176: 106062, 2022 02.
Article in English | MEDLINE | ID: mdl-35017046

ABSTRACT

Gliflozins are a novel class of oral anti-diabetic drugs, acting as inhibitors of sodium-glucose co-transporters (SGLTs) through the proximal convoluted tubules (PCT) and intestinal epithelium. The sodium-glucose co-transporters 2 (SGLT2) are mainly expressed in S1 and S2 segments of the proximal convoluted tubule in the kidneys. Clinical guidelines recommend their use especially in Type 2 Diabetes mellitus (T2DM) patients with vascular complications and/or heart failure highlighting the importance of sodium-glucose co-transporter 2 inhibitors (SGLT2i) pleiotropic effects. Interestingly, cognitive decline is a widely recognized complication of T2DM and, in addition, to clarify its pathophysiology, there is an urgent need to understand how and if diabetes therapies can control diabetes-related cognitive dysfunction. At the time, although SGLT2 proteins are present in the Central Nervous System (CNS), the SGLT2i effects on cognitive impairments remain partly unknown. In pre-clinical studies, SGLT2i ameliorates cognitive dysfunction in obese and T2DM mice, reducing oxidative stress, neuroinflammation and improving neuronal plasticity and mitochondrial brain pathway. In addition, SGLT2i could bring back mTOR to a physiological state of activation, stopping neurodegenerative diseases' onset or progression. Instead, clinical studies on T2DM-related cognitive dysfunction treated by SGLT2i are much more limited. For these reasons, further studies are needed to better elucidate if SGLT2i therapy can affect T2DM-related cognitive decline. In this scenario, this review aims to summarize the state of knowledge on the role of SGLT2i in T2DM-related cognitive dysfunction and stimulate new clinical trials.


Subject(s)
Cognitive Dysfunction/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Neuroprotective Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Animals , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/etiology , Diabetes Mellitus, Type 2/complications , Humans , Sodium-Glucose Transporter 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...