Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Osteoporos Rep ; 16(1): 65-75, 2018 02.
Article in English | MEDLINE | ID: mdl-29417446

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to examine the anorexia nervosa-microbiota-bone relationship, offering a compilation of the relevant human and animal studies that may contribute to a more comprehensive understanding of potential mechanisms involved. RECENT FINDINGS: Recent studies have implicated fermentation by-products of the gut microbiota in bone metabolism. Compromised bone health often accompanies anorexia nervosa due to energy deficiency and hypoestrogenism. The gut microbiome has been implicated as a link between these conditions and impaired bone growth phenotypes. Current research supports decrements in Firmicutes and short-chain fatty acids with increases in Methanobrevibacter smithii and Proteobacteria in anorexia nervosa. A potential mechanism for microbiome-regulated bone growth is through modulation of insulin-like growth factor-1. Future research should aim to examine short-chain fatty acids, probiotics, and prebiotics as alternative therapies to treat low bone density in anorexia nervosa.


Subject(s)
Anorexia Nervosa/complications , Bone Development/physiology , Bone and Bones/physiopathology , Gastrointestinal Microbiome/physiology , Animals , Female , Humans , Insulin-Like Growth Factor I/metabolism , Male , Probiotics/pharmacology
2.
Pflugers Arch ; 469(12): 1591-1602, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28776263

ABSTRACT

Altered mitochondrial respiration, morphology, and quality control collectively contribute to mitochondrial dysfunction in the aged heart. Because myocardial infarction remains the leading cause of death in aged women, the present study utilized a novel rodent model to recapitulate human menopause to interrogate the combination of age and estrogen deficiency on mitochondrial ultrastructure and function with cardiac ischemia/reperfusion (I/R) injury. Female F344 rats were ovariectomized (OVX) at 15 months and studied at 24 months (MO OVX; n = 40) vs adult ovary intact (6 months; n = 41). Temporal declines in estrogen concomitant with increased visceral adipose tissue were observed in MO OVX vs adult. Following in vivo coronary artery ligation or sham surgery, state 3 mitochondrial respiration was selectively reduced by age in subsarcolemmal mitochondria (SSM) and by I/R in interfibrillar mitochondria (IFM); left ventricular maximum dP/dt was reduced in MO OVX (p < 0.05). Elevated cyclophilin D and exacerbated I/R-induced mitochondrial acetylation in MO OVX suggest permeability transition pore involvement and reduced protection vs adult (p < 0.05). Mitochondrial morphology by TEM revealed an altered time course of autophagy coordinate with attenuated Drp1 and LC3BII protein levels with age-associated estrogen loss (p < 0.05). Here, reductions in both SSM and IFM function may play an additive role in enhanced susceptibility to regional I/R injury in aged estrogen-deficient female hearts. Moreover, novel insight into altered cardiac mitochondrial quality control garnered here begins to unravel the potentially important regulatory role of mitochondrial dynamics on sustaining respiratory function in the aged female heart.


Subject(s)
Aging/pathology , Disease Models, Animal , Mitochondria/ultrastructure , Myocardial Reperfusion Injury/physiopathology , Animals , Estrogens/deficiency , Female , Mitochondria/pathology , Myocardial Reperfusion Injury/pathology , Ovariectomy , Rats , Rats, Inbred F344
3.
J Chromatogr A ; 1360: 275-87, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25129391

ABSTRACT

Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6µm and Ascentis(®) Express HILIC 2.7µm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6µm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation.


Subject(s)
Chromatography, Supercritical Fluid/methods , Pharmaceutical Preparations/analysis , Ions/chemistry , Kinetics , Pharmaceutical Preparations/chemistry , Porosity , Pyridines/chemistry , Silicon Dioxide/chemistry , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...