Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 17(1): 113, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012131

ABSTRACT

BACKGROUND: Malate is a C4-dicarboxylic acid widely used as an acidulant in the food and beverage industry. Rational engineering has been performed in the past for the development of microbial strains capable of efficient production of this metabolite. However, as malate can be a precursor for specialty chemicals, such as 2,4-dihydroxybutyric acid, that require additional cofactors NADP(H) and ATP, we set out to reengineer Escherichia coli for Krebs cycle-dependent production of malic acid that can satisfy these requirements. RESULTS: We found that significant malate production required at least simultaneous deletion of all malic enzymes and dehydrogenases, and concomitant expression of a malate-insensitive PEP carboxylase. Metabolic flux analysis using 13C-labeled glucose indicated that malate-producing strains had a very high flux over the glyoxylate shunt with almost no flux passing through the isocitrate dehydrogenase reaction. The highest malate yield of 0.82 mol/mol was obtained with E. coli Δmdh Δmqo ΔmaeAB ΔiclR ΔarcA which expressed malate-insensitive PEP carboxylase PpcK620S and NADH-insensitive citrate synthase GltAR164L. We also showed that inactivation of the dicarboxylic acid transporter DcuA strongly reduced malate production arguing for a pivotal role of this permease in malate export. CONCLUSIONS: Since more NAD(P)H and ATP cofactors are generated in the Krebs cycle-dependent malate production when compared to pathways which depend on the function of anaplerotic PEP carboxylase or PEP carboxykinase enzymes, the engineered strain developed in this study can serve as a platform to increase biosynthesis of malate-derived metabolites such as 2,4-dihydroxybutyric acid.


Subject(s)
Citric Acid Cycle/physiology , Escherichia coli/metabolism , Malates/metabolism , Metabolic Engineering/methods , Adenosine Triphosphate/metabolism , Citric Acid Cycle/genetics , Escherichia coli/genetics , NAD/metabolism , NADP/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism
2.
PLoS One ; 13(2): e0193036, 2018.
Article in English | MEDLINE | ID: mdl-29462203

ABSTRACT

An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site.


Subject(s)
High-Throughput Screening Assays/methods , Malates/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Amino Acid Substitution , Aspartate Kinase/genetics , Aspartate Kinase/metabolism , Catalytic Domain/genetics , Directed Molecular Evolution , Gene Library , Genetic Variation , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Phosphotransferases/isolation & purification , Protein Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Static Electricity , Substrate Specificity
3.
Nat Commun ; 8: 15828, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28631755

ABSTRACT

2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.


Subject(s)
Butylene Glycols/metabolism , Butyrates/metabolism , Metabolic Networks and Pathways , Methionine/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Escherichia coli/metabolism , Glucose/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Metabolic Engineering , Models, Molecular , Mutagenesis, Site-Directed , Phosphotransferases/genetics , Phosphotransferases/metabolism , Synthetic Biology , Thermodynamics
4.
Microb Cell Fact ; 14: 127, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26336892

ABSTRACT

BACKGROUND: Ethylene glycol (EG) is a bulk chemical that is mainly used as an anti-freezing agent and a raw material in the synthesis of plastics. Production of commercial EG currently exclusively relies on chemical synthesis using fossil resources. Biochemical production of ethylene glycol from renewable resources may be more sustainable. RESULTS: Herein, a synthetic pathway is described that produces EG in Escherichia coli through the action of (D)-xylose isomerase, (D)-xylulose-1-kinase, (D)-xylulose-1-phosphate aldolase, and glycolaldehyde reductase. These reactions were successively catalyzed by the endogenous xylose isomerase (XylA), the heterologously expressed human hexokinase (Khk-C) and aldolase (Aldo-B), and an endogenous glycolaldehyde reductase activity, respectively, which we showed to be encoded by yqhD. The production strain was optimized by deleting the genes encoding for (D)-xylulose-5 kinase (xylB) and glycolaldehyde dehydrogenase (aldA), and by overexpressing the candidate glycolaldehyde reductases YqhD, GldA, and FucO. The strain overproducing FucO was the best EG producer reaching a molar yield of 0.94 in shake flasks, and accumulating 20 g/L EG with a molar yield and productivity of 0.91 and 0.37 g/(L.h), respectively, in a controlled bioreactor under aerobic conditions. CONCLUSIONS: We have demonstrated the feasibility to produce EG from (D)-xylose via a synthetic pathway in E. coli at approximately 90 % of the theoretical yield.


Subject(s)
Escherichia coli/metabolism , Ethylene Glycol/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways , Xylose/metabolism , Bioreactors
5.
Proc Natl Acad Sci U S A ; 108(4): 1278-83, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21205901

ABSTRACT

Bacterial metabolism is characterized by a remarkable capacity to rapidly adapt to environmental changes. We restructured the central metabolic network in Escherichia coli to force a higher production of NADPH, and then grew this strain in conditions favoring adaptive evolution. A six-fold increase in growth capacity was attained that could be attributed in multiple clones, after whole genome mutation mapping, to a specific single mutation. Each clone had an evolved NuoF*(E183A) enzyme in the respiratory complex I that can now oxidize both NADH and NADPH. When a further strain was constructed with an even higher degree of NADPH stress such that growth was impossible on glucose mineral medium, a solid-state screening for mutations restoring growth, led to two different types of NuoF mutations in strains having recovered growth capacity. In addition to the previously seen E183A mutation other clones showed a E183G mutation, both having NADH and NADPH oxidizing ability. These results demonstrate the unique solution used by E. coli to overcome the NADPH stress problem. This solution creates a new function for NADPH that is no longer restricted to anabolic synthesis reactions but can now be also used to directly produce catabolic energy.


Subject(s)
Adaptation, Physiological/genetics , Escherichia coli Proteins/genetics , Mutation , Quinone Reductases/genetics , Aerobiosis , Amino Acid Substitution , Binding Sites , Biocatalysis , Directed Molecular Evolution , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Genome, Bacterial/genetics , Glucose/metabolism , Kinetics , Models, Molecular , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Phenotype , Protein Structure, Tertiary , Quinone Reductases/chemistry , Quinone Reductases/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...